Modeling Thermally Induced Compaction in Diatomite

Author:

Dietrich J. K.1,Scott J. D.2

Affiliation:

1. Dietrich Corp.

2. U. of Alberta at Edmonton

Abstract

Summary Diatoms and radiolarians are microorganisms that precipitate Opal-A to form siliceous tests that accumulate on the seafloor to form siliceous oozes. Progressive diagenesis of these deposits during burial results in thick, highly compressible reservoirs of exceptionally high porosity and low permeability, not unlike the chalk reservoirs of the North Sea. During burial and over time, the amorphous silica phase (Opal-A) becomes unstable and gradually changes in its structure to more stable, ordered Opal-A′ and crystalline forms or phases of silica, namely Opal-CT and quartz. The Opal-A→Opal-A′→Opal-CT→quartz transformation results in a naturally occurring densification and compaction process that is accelerated by an application of heat. Reservoir compaction and surface subsidence can usually be controlled by injecting fluid to control the effective stress. However, in heavy-oil diatomite reservoirs undergoing steam injection, the injected fluid causes competing effects: it controls effective stress to some degree, yet at the same time it accelerates compaction and subsidence. This paper describes selected results of a diatomite laboratory testing program and features of a unique thermal reservoir simulator formulated to handle the effects on compaction caused by stress, temperature, and time-dependent strain (creep). Elevated temperature in amorphous Opal-A diatomite is shown to be capable of causing a sample compression of 25% or more and a severe reduction in permeability. The effects of thermally induced compaction are expected to accelerate surface subsidence as diatomite steam projects mature.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3