The Spurious Deflection on Log-Log Superposition-Time Derivative Plots of Diagnostic Fracture-Injection Tests

Author:

McClure Mark1

Affiliation:

1. McClure Geomechanics

Abstract

Summary Log-log superposition-time derivative plots are used to identify flow regimes in well tests with variable rate. The use of superposition time adjusts for the effect of the prior rate history, and (under some conditions) shows what the transient would have looked like if the test had been performed at a constant rate. In this report, I show that if these plots are used to interpret shut-in transients from diagnostic fracture-injection tests (DFITs), the superposition-time derivative has an upward deflection that does not represent actual reservoir or transient behavior. I review mathematical properties of the superposition-time derivative. I derive equations for the pressure transient in a simplified model DFIT in which closure does not occur. I show that the onset of late-time impulse flow is controlled by injection volume and formation, wellbore, and fracture properties, not the duration of injection (as implied by the definition of superposition time). Log-log superposition-time derivative plots of DFITs exhibit a slope of 3/2 at intermediate time. However, pressure change never scales with a 3/2 power of time. One form of the G-function superficially resembles a superposition-time function constructed by summing constant-rate solutions with 3/2 power scaling. However, this is not a mathematically or physically valid interpretation. The 3/2 power arises from a spatial integration of the Carter leakoff solution. There is not a mathematical, physical, or practical justification for plotting DFIT pressure-time data in a way that creates a 3/2 slope. I conclude by providing a field example and practical recommendations for DFIT interpretation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3