A Current Appraisal of In-Situ Combustion Field Tests

Author:

Ali S.M. Farouq1

Affiliation:

1. The Pennsylvania State U.

Abstract

According to these reports on more than two dozen tests, in-situ combustion, when property engineered, can recover 50 percent of oil in place. However, lest you be fired up, in the heat of statistics, to ignite your reservoir, bear in mind that man by nature is disinclined to expose his failures. Introduction In-situ combustion may be said to date back to 1888 when Mendeleev suggested the in-situ conversion of coal into combustible gases. In 1934, Sheinman and Dubrovai, on the basis of earlier laboratory studies, proposed the process of oil recovery by means of a proposed the process of oil recovery by means of a moving underground firefront. Following this, a number of field tests were carried out in Azerbaidjan and other regions from 1934 to 1937. An analysis of the tests showed that the heat losses were so large that injected hot gases reached the formation face with zero thermal energy. Nevertheless. the tests opened the way to more field tests, laboratory research, and theoretical studies, as a result of which in-situ combustion has come to be recognized as a promising method of recovering oil. At the present time there are nearly 300 papers, and close to a dozen books (in Russian) dealing partly or wholly with in-situ combustion. At least nine large-scale field in-situ combustion projects are currently in operation. Listings of field projects are currently in operation. Listings of field tests can be found in a number of publications (for example, Refs. 5, 6, 51, 54, 61, 64, 65). The main purpose of this paper is to present, compare, and contrast the performance of two dozen forward combustion tests that have been reported in detail out of 100 or so that have been cited in the literature. Reverse combustion and various modifications of the basic process will not be considered. Only brief mention will be made of wet combustion tests. Also, the paper is not intended to give criteria for designing a combustion project, nor does it purport to discuss equipment and operational aspects of firefloods, except for the special operational problems encountered in fireflooding. No reference will be made to a great many experimental and mathematical studies conducted principally in the U. S., U.S.S.R., and Holland; however, a few instances will be cited where the experimental and predicted results were compared with the test results. Principle Statistics of Selected Firefloods Principle Statistics of Selected Firefloods Tables 1A and 1B summarize the principal statistics of 24 forward combustion tests. These, and the two cited below. seem to be the only ones for which information is available on oil recovery or air-oil ratio (AOR), or both. In a few cases, certain performance data were estimated from the reported performance data were estimated from the reported data. Such values are indicated by a question mark. It is recognized that the highly complex in-situ combustion process, compounded by reservoir heterogeneities, cannot be expressed in terms of over-all parameters. However, in spite of its limitations the table should be of value in balancing out the most favorable conditions for a fireflood. Notice that the table does not give values of the producing gas-oil ratio (GOR) water-oil ratio (WOR), producing gas-oil ratio (GOR) water-oil ratio (WOR), ignition information, gas recovery, produced gas composition, sweep data, etc. These items are covered in separate sections. The test numbers used in the text refer to the corresponding tests in the tables. To complete the table, two tests should be added. The available information on them is rather meager, but the key data are available. JPT P. 477

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3