Affiliation:
1. Delft University of Technology
2. Instituto Nacional de Mathematica Pura e Aplicada
Abstract
Summary
Creation of low-mobility foam for enhanced oil recovery (EOR) is triggered by an increase in superficial velocity; thereafter, injection rate can be reduced to lower values, and strong foam remains at velocities at which weak foam was previously observed. Here, we consider whether strong foam created near an injection well can propagate to large distances from the well where superficial velocity is much smaller. We study strong-foam propagation with finite-difference simulations and Riemann solutions, applying a population-balance foam model that represents the multiple steady states of foam.
Our simulations show that strong foam cannot displace directly the initial high-water-saturation bank initially in the reservoir at low superficial velocities; it pushes a weak-foam state with lower velocity that in turn displaces the bank ahead. Our traveling-wave solutions show that strong foam propagates more slowly as superficial velocity decreases and stops propagating at yet lower superficial velocities, in agreement with the experiment. Failure of propagation occurs at superficial velocities greater than that at which the strong-foam state disappears; it raises concerns for long-distance propagation of strong foam created near the injection well. In the context of the model, it is not extraordinary destruction of foam at the front that slows the propagation of strong foam, but failure of foam (re-)generation at the front. Our model also represents for the first time a process where strong foam is created near the exit of a core and then propagates upstream, as seen in some experiments.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献