NMR Relaxation of Clay/Brine Mixtures

Author:

Matteson A.1,Tomanic J. P.1,Herron M. M.1,Allen D. F.1,Kenyon W. E.1

Affiliation:

1. Schlumberger-Doll Research

Abstract

Summary Effective interpretation of nuclear magnetic resonance (NMR) logs in shaly sands requires an understanding of the NMR contribution of clays. Of particular importance is the role of clays in the rapidly relaxing part of the NMR signal. In this study we measured the transverse relaxation time spectrum (T2) of brine mixed with four clays (illite, smectite, kaolinite and glauconite) as a function of compaction. The Larmor frequency was 2 MHz and the echo spacing 0.16 ms. Mild compaction was achieved by centrifuging the clay slurry at three successive pressures ranging from 1 to 125 psi. Highly compacted samples were produced in a uniaxial press at six sequential pressures ranging from 500 to 16,000 psi. Each clay/brine slurry and its associated compacted sample showed a single peak in the T2 distribution spectrum. A second peak, which could be interpreted as the "clay-bound water," was never observed. The T2 peak position shifted to faster relaxation times as compaction increased, in proportion to the pore volume-to-surface ratio, Vp /As. The single peak and Vp /As proportionality are consistent with fast diffusion between the pore water and the monolayer of water on the clay surface. Surface relaxivity varied among the four clay minerals; glauconite, the clay with the highest magnetic susceptibility and iron content had the largest surface relaxivity. These results have important implications for the interpretation of NMR logs in shaly sands. Because of the effects of compaction and to a lesser extent the iron content on a clay's T2 peak position, it is not possible to independently determine clay type from some characteristic relaxation time. These data also imply that it is not feasible to estimate the cation exchange capacity from a single time cutoff of the T2 distribution without additional information such as laboratory measurements or other log data.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3