Dual Application of Polyelectrolyte Complex Nanoparticles as Enzyme Breaker Carriers and Fluid Loss Additives for Fracturing Fluids

Author:

Bose Charles C1,Alshatti AIR Bader1,Swarts Levi1,Gupta Aadish1,Barati Reza1

Affiliation:

1. The University of Kansas, Lawrence, KS

Abstract

Abstract Guar-based fluids are commonly used as fracturing fluids to form a filter cake, propagate the fracture and carry proppants during a typical hydraulic fracturing job. High viscosity during injection and degradation afterwards are the characteristics of a high quality fracturing fluid that can maintain a highly conductive fracture during production. In order to achieve a conductive fracture, cross-linkers and breakers are added to the fluid. Filter cakes form on the faces of the fracture during injection causing a major pressure drop between the fracture and the reservoir during the production. Degradation of filter cakes formed on fracture faces has been accomplished using chemical breakers Enzymes and oxidizers are the two main classes of breakers. Enzyme breakers have many advantages over chemical oxidizers: they are cheap, are not consumed during their catalytic reaction with guar, react only with the polymer, are environmentally benign, easy to handle and do not damage wellhead equipment. Different methods of injecting high concentration breakers are still not capable of degrading the residues left after the fracturing jobs. Permeability reduction of proppant pack due to gel residues, width loss caused by the unbroken gel on fracture face and length loss caused by incomplete degradation of filter cake near the tip of the fractures have been previously reported. It has been previously proven that polyethylenimine-dextran sulfate (PEI-DS) nanoparticles can delay the release of enzymes which reduce the viscosity of cross linked guar. This delayed release can be advantageous in order to inject higher concentrations of enzymes by encapsulating the enzyme inside nanoparticles. However, performance of these nanoparticles in reaction with high concentration filter cakes has not been studied yet. The main objective of this work is to study the feasibility of using polyelectrolyte complex nanoparticles as enzyme breaker carriers and fluid loss additives to be used for hydraulic fracturing applications. Specifically, the fluid loss prevention and clean-up capabilities of the nanoparticle system for fractures propagated in tight formations are studied. Static fluid loss tests showed a significant reduction, caused by PEC nanoparticles, in both fluid loss coefficients and fluid loss volumes of tight core plugs with permeability values within the 0.01-0.1 mD range. Fracture conductivity tests, both fluid loss and clean-up, were conducted using HPG gel, HPG gel mixed with enzyme, and HPG gel mixed with enzyme-loaded nanoparticle systems and the results were compared with the baseline conductivity of the system. Significant improvement in the retained conductivity of the proppant pack was observed using the enzyme-loaded nanoparticle system.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental and Numerical Evaluation of Enzyme-Assisted Hot Waterflooding Performance for Heavy Oil Reservoirs;Journal of Energy Resources Technology;2022-10-03

2. Intelligent materials in unconventional oil and gas recovery;Sustainable Materials for Oil and Gas Applications;2021

3. Nanoparticles applications for hydraulic fracturing of unconventional reservoirs: A comprehensive review of recent advances and prospects;Journal of Petroleum Science and Engineering;2019-07

4. Polyelectrolyte-Complex Nanoparticles for Fluid-Loss Control in Oilwell Cementing;SPE Drilling & Completion;2019-01-23

5. Fluid Leakoff;Hydraulic Fracturing: Fundamentals and Advancements;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3