Mixing Hydrochloric Acid and Seawater for Matrix Acidizing: Is It a Good Practice?

Author:

He J..1,Mohamed I. M.1,Nasr-El-Din H. A.1

Affiliation:

1. Texas A&M University

Abstract

Abstract In offshore operations where seawater is commonly used to prepare hydrochloric acid, calcium sulfate precipitation, the potential of which can greatly reduce the effectiveness of these treatments. This is because high concentreation of calcium produced in spent acid mixed with high level of sulfate in seawater. However, a few studies have provided evidence for this problem and the effect of calcium sulfate precipitation on acid treatments has not been fully examined. In this work, core flood experiments at 0.5, 1, and 5 cm3/min flow rates were performed at 25°C to investigate formation damage due to calcium sulfate precipitation during matrix acidizing treatment. Austin Chalk cores (6 in. length and 1.5 in. diameter) with a permeability of 10 md and synthetic seawater were used. The core permeability before and after acid treatment, pressure drop response, calcium ion, sulfate ion, and pH values in the core effluent samples were measured. Solids collected in the core effluent samples were analyzed using XPS technique. Both acid prepared in seawater and in deionized water were examined. Results showed that calcium sulfate precipitation occurred when seawater was used in any stage during matrix acidizing including preflush, post-flush, or in the main stage. Injection rate was the most important parameter that affected calcium sulfate precipitation; permeability reduction was significant at low flow rates, while at high rates wormhole breakthrough reduced the severity of the problem. This work confirms the damaging effect of preparing hydrochloric acid using seawater for acid treatments.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3