Gas-Well Production Decline in Multiwell Reservoirs

Author:

Aminian Khashayar1,Ameri Samuel1,Stark Joseph J.2,Yost Albert B.3

Affiliation:

1. West Virginia U.

2. Exxon Co. U.S.A.

3. U.S. DOE

Abstract

Summary This paper introduces a pseudosteady-state constant pseudosteady-stateconstant pressure solution for gas wells. The pressure solution for gas wells. The solution was used to develop a type-curve-based method to history match andpredict multiwell gas reservoir production. Good agreements production. Goodagreements between the predicted and actual gas-well production rates wereobtained. Introduction The determination of future production rates and recoverable gas reservesare the primary requirements for the evaluation of natural gas reservoirs. Theconventional method of predicting long-term gas reservoir predicting long-termgas reservoir performance uses the deliverability and performance uses thedeliverability and materialbalance equations. To use these equations, thereservoir parameters included in them, such as gas in place and formationcharacteristics, must be determined. Often, however, the only available dataare from the production history (production rate vs. production history(production rate vs. time). Also, using numerical reservoir models (simulators)to analyze the production history is impractical when the production history isimpractical when the formation and pressure data are unavailable. In the absence of complete reservoir data, production-decline type curvescan be used production-decline type curves can be used to predict the futureperformance and reserves. Generally, production-decline type curves are thelong-term, constant-pressure solutions. The type curves usually are plotted inthe form of dimensionless flow rate plotted in the form of dimensionless flowrate vs. dimensionless time on log-log paper. The production-decline history ismatched graphically with the production-decline type curves, and the futureproduction rates and reserves are evaluated. The idea of using the log-log type curves to analyze the production declinehistory was originally introduced by Fetkovich. A number of production-declinetype curves for gas reservoirs have since been published. These type curveswere published. These type curves were generated from analytical and/ornumerical solutions. These solutions, however, often ignored one or more of thefactors that affect the long-term production performance of gas wells, such asthe pressure dependency of natural gas viscosity and compressibility, thepressure loss owing to non-Darcy flow, and the existence of other producingwells in the same reservoir. The objective of this study has been to derive a representativeproduction-decline type curve solution that accounts for all theabove-mentioned factors. This solution provides a better understanding of howthese provides a better understanding of how these factors influence the typecurves. The resulting type curves can then be used to analyze theproduction-decline history. The results of the history match will provide therequired parameters for predicting the future performance and reserves. Thisapproach performance and reserves. This approach also allows prediction ofproduction rates when reservoir parameters are altered by infill drilling, compressor installation, or stimulation. Performance in Performance in Muitiwell Reservoirs Gas-well performance and interference in multiwell reservoirs were firststudied by Muskat, who used Darcy's law to derive the steady-state pressuredistribution in multiwell oil reservoirs. The results of his study indicatedthat the interference is significant only when the distance between the wellsis less than the drainage radii of the wells. Muskat concluded that theinterference in a multiwell reservoir is controlled by the distance between thewells, number of producing wells, and well pattern (four-spot, producing wells, and well pattern (four-spot, five-spot, etc.). The factors that control interference determine the shape and relativelocation of the drainage boundary for each well in a multiwell reservoir. Consequently, the well performance in a multiwell reservoir can be performancein a multiwell reservoir can be determined by including the shape factor in theflow equation for a single-well reservoir.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3