A Complex Morphologically Regular Pore Network Model to Study Water Retention Curve of Hydrate-Bearing Sediments

Author:

Chen Mingqiang1,Li Qingping1,Lyu Xin1,Pang Weixin1,Fu Qiang1,Lyu Chaohui2,Jiao Hongmei1

Affiliation:

1. Research Center of China National Offshore Oil Corporation, State Key Laboratory of Natural Gas Hydrates

2. China University of Petroleum, Beijing

Abstract

Abstract Water retention curve essentially determined by pore throat morphology, wettability, pore connectivity and so on has a close relationship with many physical properties of hydrate-bearing sediments. Figuring out its accurate dynamic evolution regularity is of significant importance to the efficient development of gas hydrate deposits. However, most currently used hydrate-bearing networks for capturing the dynamic evolution of water retention curve possess over simplified pore throat cross-sections, resulting in ambiguous evolution law. In this work, a regular hydrate-bearing network with complex pore throat morphology combining circles, squares, arbitrary triangles, regular n-cornered star, and regular polygons in the pattern of grain-coating hydrate is firstly constructed. Then, the capillary entry pressure of different pore throat morphology in the presence of hydrate and process of primary drainage are respectively introduced. Afterwards, primary drainage is carried out in the established network based on invasion percolation. The dynamic displacement characteristics and water retention curves are relatively obtained. Furthermore, factors influencing the dynamic displacement characteristics and evolution of water retention curves in hydrate-bearing sediments such as pore throat cross-section, wettability, coordination number and initial aspect ratio are investigated in detail. Results indicate that the capillary entry pressure increases with increased hydrate saturation due to the reduction of effective pore throat radius caused by hydrate occupation. The number of gas invaded pore bodies and throats grows small with the increase of hydrate saturation at the same capillary pressure, causing large water saturation. The water retention curve evolves to an increasing direction with increased hydrate saturation during primary drainage. Pore throat morphology plays a significant role in capillary entry pressure, the number of gas invaded pore throats at the same capillary pressure, fluid configuration at the same pore throat cross-section, and gas-water spatial distribution, resulting in great difference of water retention curves. With the decrease of wettability to aqueous phase, the capillary entry pressure grows small, and the number of gas invaded pore throats becomes large, resulting in small water saturation at the same capillary pressure. Meanwhile, the proportion of piston-like displacement without water film turns large, leading to large connate water saturation when all water-filled pore throats that satisfy the criteria for gas invasion are invaded. In addition, the number of gas invaded pore bodies and throats increases at the same capillary pressure with increased coordination number, causing small water saturation. At the same time, the proportion of piston-like displacement with water film becomes large, resulting in small connate water saturation. And the water retention curve evolves to the direction of large values with the increase of coordination number. However, the initial aspect ratio has little impact on dynamic displacement characteristics and water retention curves through changing the generated pore body radius while the throat radius is kept constant. This work provides a novel insight into dynamic displacement characteristics and evolution of water retention curves in hydrate-bearing sediments.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3