Temperature Distribution in a Circulating Drilling Fluid

Author:

Raymond L.R.1

Affiliation:

1. Esso Production Research Co.

Abstract

A technique for calculating drilling temperature as a function of position and time shows that circulation lowers considerably the position and time shows that circulation lowers considerably the temperatures of both the bottom-hole fluid and the rock and that the maximum circulating fluid temperature occurs a fourth to a third of the way up the annulus. Introduction With the trend toward deeper and consequently hotter holes, measurements of drilling mud properties at atmospheric temperatures are becoming increasingly inadequate. Both the prediction and control of downhole mud properties depend in part upon our knowledge of temperatures in the wellbore. Consequently, a better understanding of factors that affect temperatures during circulation and trips could improve drilling operations. It was toward the goal of obtaining this understanding that this study was directed. Other investigators have studied the response of fluid temperature in the borehole during trips. However, all of these studies have used an assumed formation temperature profile at the conclusion of circulation and have provided no means to calculate this profile directly. In this study, the formation profile during circulation was calculated. Other profile during circulation was calculated. Other investigators have also studied bottom-hole temperature during circulation. However, they have developed neither general techniques for calculating the entire temperature profile in the system nor generalized methods for predicting bottom-hole fluid temperatures during circulation. Such techniques and methods have been developed and are discussed briefly in the following pages. Temperature Behavior During Circulation Circulation of fluid during the drilling operation is represented schematically in Fig. 1. The process of circulation has three distinct phases:fluid enters the drill pipe at the surface and passes down the drill pipe;fluid exits the drill pipe through the bit and pipe;fluid exits the drill pipe through the bit and enters the annulus at the bottom; andfluid passes up the annulus and exits the annulus at the surface. To simulate the thermal behavior of the fluid in the system, each of the phases of circulation must be described mathematically. In Phase 1, the fluid enters the drill pipe at a specified temperature, TDo. As the fluid passes down the pipe, its temperature is determined by the rate of heat convection down the drill pipe, the rate of heat exchange between the drill pipe and the annulus, and time. Phase 2 of the circulating process merely requires that the fluid temperature at the exit of the drill pipe be the same as the fluid temperature at the entrance of the annulus; i.e., TD(L, t) = TA(L, t). Thus in Phase 3, the fluid enters the annulus at TD(L, t). As the fluid flows up the annulus, its temperature is determined by the rate of heat convection up the annulus, the rate of heat exchange between the annulus and the drill pipe, the rate of heat exchange between the formation adjacent to the annulus and the fluid in the annulus, and time. These rates of heat exchange and the time dependency of mud temperature are described by well known heat-flow equations. JPT P. 333

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3