Modeling Flow and Transport in Saline Aquifers and Depleted Hydrocarbon Reservoirs for Hydrogen Energy Storage

Author:

Delshad M.1ORCID,Alhotan M. M.1ORCID,Fernandes B. R. B.2ORCID,Umurzakov Y.1ORCID,Sepehrnoori Kamy1ORCID

Affiliation:

1. The University of Texas at Austin

2. The University of Texas at Austin (Corresponding author)

Abstract

Summary Hydrogen (H2) is an attractive energy carrier, and its true potential is in decarbonizing industries, such as for providing heat for buildings and being a reliable fuel for trains, buses, and heavy trucks. Industry is already making tremendous progress in cutting costs and improving the efficiency of hydrogen infrastructure. Currently, heating is primarily provided by using natural gas and transportation by gasoline with a large carbon footprint. Hydrogen has a similarly high energy density, but there are technical challenges preventing its large-scale use as an energy carrier. Underground geologic storage of hydrogen in porous media (aquifers and hydrocarbon reservoirs) could offer substantial storage capacity at low cost as well as buffer capacity to meet changing seasonal electricity demands or possible disruptions in power supply. Underground geologic storage must have adequate capacity and ability to inject/extract high volumes with a reliable caprock. A thorough study is essential for a large number of site surveys to locate and fully characterize the subsurface geological storage sites both onshore and offshore. An isothermal compositional reservoir simulator was used to evaluate hydrogen storage and withdrawal from saline aquifers and depleted oil/gas reservoirs. The phase behavior, fluid properties, and petrophysical models were all calibrated against published laboratory data for density, viscosity, relative permeability, and capillary pressure for a given site. History-matched dynamic models of two CO2 injection field projects in saline aquifers and one natural gas storage in a depleted oil reservoir were considered as hypothetical hydrogen seasonal storage sites. A wide range of working gas volume/cushion gas volume ratios was observed, meaning that careful optimization is required for a successful storage project. For the aquifer cases, the range was 0.292 to 1.883 and a range of 1.045 to 4.4 was observed for the depleted hydrocarbon reservoir scenarios. For the saline aquifer cases, a higher injection rate, longer injection/withdrawal (I/W) cycles, and the use of pump wells to control the hydrogen plume spreading were all beneficial for improving the working gas/cushion gas ratio and the working gas volume. Plume control was important for storage in the oil reservoir in which changes in the well length location and orientation showed high sensitivity in the working and cushion gas volumes. Sensitivities to the initial gas saturation in the depleted gas reservoir scenarios suggested that both cushion and working gas volumes increased with the initial gas saturation while the ratio of working to cushion gas volumes decreased with the initial gas saturation. Finally, when comparing the ratios of working to cushion gas volumes, it was the highest for the depleted oil reservoir, followed by the depleted gas reservoir, and the aquifer.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3