Evaluation of Devonian Shale With New Core and Log Analysis Methods

Author:

Luffel D.L.1,Guidry F.K.1,Curtis J.B.2

Affiliation:

1. ResTech Houston

2. Consultant

Abstract

Summary Results of this study of Appalachian basin Devonian shale show that allporosity exceeding 2.5% is occupied by free hydrocarbon (mostly gas). Fromanalyses of logs and 519 ft of conventional core in four wells, reservoirporosity averages 5% and free-gas content averages 2% by bulk volume. Introduction There is a growing interest in shale formations in selected areas of the U.S. as potential commercial gas and oil reservoirs. An example is the Devonianshale in the Appalachian basin, which is considered a major potential gassource. The Gas Research Inst. (GRI) sponsored a research program to improvethe understanding of formation evaluation and reservoir description in shalesand to enhance well productivity and gas recovery through better wellcompletions and stimulation methods. Four air-drilled wells were completedrecently in the Devonian shale. Extensive formation evaluation data, including519 ft of conventional cores, were collected from these wells. Designatedcomprehensive study wells (CSW's), the four wells are located in Kentucky and West Virginia. One purpose of the CSW program was to develop new formation evaluationmethods to identify gas-producing intervals both for deliverability andreserves with logging tools. Significant progress has been made. A key elementof these new evaluation progress has been made. A key element of these newevaluation methods is to establish the reservoir rock and fluid propertiesthrough careful core analyses and then to develop the log interpretationmethods necessary to match core and production results. New core analysismethods had to be developed to provide accurate measurements of reservoirporosity, gas, oil, provide accurate measurements of reservoir porosity, gas, oil, and water content. These new methods involve crushing the rock samplesbefore extraction, drying, and measuring porosity. In the black, organic-richshales present in these wells, porosities measured with the new methods werehigher by more porosities measured with the new methods were higher by morethan a factor of 3 and free-gas contents were higher by up to a factor of 20compared with conventional methods. Through use of these new core and log analysis methods, an extensivedatabase was developed for reservoir description in the four CSW wells. Severalimportant features have emerged from interpretation of these data. Results arepresented from a relatively new plotting method that relates bulk volume ofhydrocarbon to porosity. This valuable tool has provided useful insight intothe fluid distribution present in the reservoir and clearly indicated theminimum porosity required to store free hydrocarbons. Also, this plottingmethod leads to a means of determining formation resistivity factor as relatedto porosity and of controlling quality to monitor core and log analysisresults. In the Devonian shale, an important part of formation evaluation by loganalysis is to determine the amount of kerogen present because kerogen appearsas hydrocarbon-filled porosity on present because kerogen appears ashydrocarbon-filled porosity on conventional logs. In this study, total organiccarbon (TOC) and pyrolysis analyses were made on 93 core samples from the four CSW pyrolysis analyses were made on 93 core samples from the four CSW wells. Anew method was used to derive volumetric kerogen and oil content. Results(shown here) then were used to derive kerogen from the uranium response of thespectral gamma ray log. In addition, free-oil content is shown to relate tokerogen content. This is useful in partitioning the reservoir free gas and oilbecause they are indistinguishable from logs in the Devonian shale. Finally, results of salinity measurements made directly on 50 core samplesfrom the CSW wells are shown to determine formation water salinity for loganalysis. This information is very important because formation water rarely isproduced from the Devonian shale. Porosity and Fluid Content Porosity and Fluid Content In the new method ofcore analysis, a whole core piece (about 300 g) is weighed, bulk volume ismeasured by immersion in mercury, and bulk density with contained fluids iscalculated. The core piece is then crushed and blended, and a measured weightof about 100 g is taken with a sample splitter. The crushed sample is extractedwith toluene (Dean Stark) for 1 to 2 weeks and dried at 230F for 1 to 2 weeksuntil stable. The grain volume is then measured with helium. Crushed-samplebulk density is presumed to be the same as that measured on the whole corepiece.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3