The Topology of Phase Boundaries for Oil/Brine/Surfactant Systems and Its Relationship to Oil Recovery

Author:

Bourrel M.1,Chambu C.1,Schechter R.S.1,Wade W.H.1

Affiliation:

1. U. of Texas

Abstract

Abstract Surfactant/oil/water phase diagrams have become the most important screening tool used to select microemulsion systems for enhanced oil recovery. The number of phases coexisting at a given salinity, the extent of the single-phase region, and the position of the phase boundaries all have relevance with respect to oil displacement efficiency. It is shown that the phase diagrams can be made to take on different configurations depending on the alcohol cosurfactant, the salinity, the impurities present in the surfactant, and the dispersity of the surfactant mixture. Besides the importance of the phase boundary shape, this study provides further insight into factors determining the height of the binodal surface on the pseudoternary phase diagram. Results show the effect of salinity as well as the surfactant, alcohol, and hydrocarbon types on the height of the binodal surface. It is shown that salinity is the main factor; other parameters have little or no influence once a surfactant has been selected. Finally the microemulsion viscosity is shown to be related to the proximity of the formulation to phase boundaries. Extensive data for one system are presented. Introduction It is now recognized that formulating surfactant/oil/brine systems that exhibit desirable phase behavior is an important step in optimizing performance of microemulsion systems for enhanced oil recovery. Oil is displaced by a combination of mechanisms-miscible displacement, swelling of the oil phase, and low tension displacement all of which are related to the topology of the phase boundaries in composition space. To predict the outcome of a particular project, a representation of the phase boundaries and their evolution when diluted with oil or brines having various proportions of divalent ions is required. For example, successful application of the salinity gradient concept demands phase relationships specially structured to accommodate the variations in salinity experienced by the surfactant slug during the course of the flood. Recent publications have dealt with the optimal salinity as a function of total amphiphile concentration (surfactant plus cosurfactant), and reported trends that are quite different from those found if the cosurfactant (alcohol) concentration is held constant. One purpose of this paper is to demonstrate that contorted phase boundaries found by Glover et al are caused by the variation of alcohol concentration when the concentration of total amphiphile is varied and because the direction that the phase boundaries twist or rotate is controlled by the nature of the alcohol. Another important factor is the extent of the single-phase region. More precisely, the height of the demixing curve in the pseudoternary representation should be minimized. This would permit, in principle, the amount of surfactant and cosurfactant in the micellar slug to be minimized. A correlation permitting the determination of the oil, salinity, alcohol, and surfactant at which the height of the demixing curve is minimized has been reported, but few data giving the value of the minimum height have been presented. This height is an important feature of the phase boundary topology and extensive measurements are reported here. The microemulsion viscosity must be high enough to help maintain mobility control. It is sometimes difficult to achieve the required levels of viscosity. Studies of microemulsion viscosity have been reported. We provide further data here and have related the microemulsion viscosities to phase behavior. Materials and Experimental Techniques The phase diagrams have been established by two techniques: a titration procedure and a grid-point technique. SPEJ P. 28^

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3