Wettability Literature Survey- Part 1: Rock/Oil/Brine Interactions and the Effects of Core Handling on Wettability

Author:

Anderson William G.1

Affiliation:

1. Conoco Inc.

Abstract

Wettability Literature Survey- Part 1: Rock/Oil/Brine Interactions Part 1: Rock/Oil/Brine Interactions and the Effects of Core Handling on Wettability Summary Wettability is a major factor controlling the location, flow, and distribution of fluids in a reservoir. The wettability of a core will affect almost all types of core analyses, including capillary pressure, relative permeability, waterflood behavior, electrical properties, and simulated tertiary recovery. The most accurate results are obtained when native- or restored-state cores are run with native crude oil and brine at reservoir temperature and pressure. Such conditions provide cores that have the same wettability as the reservoir. The wettability of originally water-wet reservoir rock can be altered by the adsorption of polar compounds and/or the deposition of organic material that was originally in the crude oil. The degree of alteration is determined by the interaction of the oil constituents, the mineral surface, and the brine chemistry. The procedures for obtaining native-state, cleaned, and restored-state cores are discussed, as well as the effects of coring, preservation, and experimental conditions on wettability. Also reviewed are methods for artificially controlling the wettability during laboratory experiments. Introduction This paper is the first of a series of literature surveys covering the effects of wettability on core analysis. Changes in wettability have been shown to affect capillary pressure, relative permeability, waterflood behavior, dispersion of tracers, simulated tertiary recovery, irreducible water saturation (IWS), residual oil saturation (ROS), and electrical properties. For core analysis to predict the behavior of a reservoir accurately, the wettability of a core must be the same as the wettability of the undisturbed reservoir rock. A serious problem occurs because many aspects of core handling can drastically affect wettability. Water-Wet, Oil-Wet, and Neutrally Wet. Wettability is defined as "the tendency of one fluid to spread on or adhere to a solid surface in the presence of other immiscible fluids. "In a rock/oil/brine system, it is a measure of the preference that the rock has for either the oil or water. When the rock is water-wet, there is a tendency for water to occupy the small pores and to contact the majority of the rock surface. Similarly, in an oil-wet system, the rock is preferentially in contact with the oil; the location of the two fluids is reversed from the water-wet case, and oil will occupy the small pores and contact the majority of the rock surface. It is important to note, however, that the term wettability is used for the wetting preference of the rock and does not necessarily refer to preference of the rock and does not necessarily refer to the fluid that is in contact with the rock at any given time. For example, consider a clean sandstone core that is saturated with a refined oil. Even though the rock surface is coated with oil, the sandstone core is still preferentially water-wet. This wetting preference can be preferentially water-wet. This wetting preference can be demonstrated by allowing water to imbibe into the core. The water will displace the oil from the rock surface, indicating that the rock surface "prefers" to be in contact with water rather than oil. Similarly, a core saturated with water is oil-wet if oil will imbibe into the core and displace water from the rock surface. Depending on the specific interactions of rock, oil, and brine, the wettability of a system can range from strongly water-wet to strongly oil-wet. When the rock has no strong preference for either oil or water, the system is said to be of neutral (or intermediate) wettability. Besides strong and neutral wettability, a third type is fractional wettability, where different areas of the core have different wetting preferences. The wettability of the rock/fluid system is important because it is a major factor controlling the location, flow, and distribution of fluids in a reservoir. In general, one of the fluids in a porous medium of uniform wettability that contains at least two immiscible fluids will be the wetting fluid. When the system is in equilibrium, the wetting fluid will completely occupy the smallest pores and be in contact with a majority of the rock surface (assuming, of course, that the saturation of the wetting fluid is sufficiently high). The nonwetting fluid will occupy the centers of the larger pores and form globules that extend over several pores. In the remainder of this survey, the terms wetting and nonwetting fluid will be used in addition to water-wet and oil-wet. This will help us to draw conclusions about a system with the opposite wettability. The behavior of oil in a water-wet system is very similar to the behavior of water in an oil-wet one. JPT P. 1125

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3