The Effect of Inclination on the Stability of Foam Systems in Drilling and Well Operations

Author:

Govindu Abhishek1,Ahmed Ramadan1,Shah Subhash1,Amani Mahmood2

Affiliation:

1. University of Oklahoma

2. Texas A&M University at Qatar

Abstract

Summary To minimize fluid loss and the associated formation damage, foam is a preferred fluid to perform cleanout operations and reestablish communication with an open completion interval. Because of their high viscosity and structure, foams are suitable cleanout fluids when underbalanced well-cleanout operations are applied. Although several studies have been conducted to better understand foam-flow behavior and hydraulics, investigations performed on foam stability are very limited. Specifically, very little is known regarding the impact of wellbore inclination on the stability of foams. Unstable foams do not possess high viscosity, and as a result, they are not effective in cleanout operations, especially in inclined wellbores. Predicting the downhole instability of foam could reduce the number of drilling problems associated with excessive liquid drainage, such as temporary overbalance, formation damage, and wellbore instability. The objectives of this study are to investigate the effects of wellbore inclination on the stability of various types of foams and develop a method to account for the effect of inclination on foam stability in inclined wells. In this study, foam-drainage experiments were performed using a flow loop that consists of a foam-drainage-measurement section and pipe viscometers. To verify proper foam generation, foam viscosity was measured using pipe viscometers and compared with previous measurements. Drainage experiments were performed with aqueous, polymer-based, and oil-based foams in concentric annulus and pipe under pressurized conditions. Tests were also conducted in vertical and inclined orientations to examine the effect of wellbore inclination on the stability of foams. The foam-bubble structure was examined and monitored in real time using a microscopic camera to study bubble coarsening. The foam quality (i.e., gas volume fraction) was varied from 40 to 80%. Results show that the drainage rates in the pipe and annular section were approximately the same, indicating a minor effect of column geometry. More importantly, the drainage rate of foam in an inclined configuration was significantly higher than that observed in a vertical orientation. The inclination exacerbated foam drainage and instability substantially. The mechanisms of foam drainage are different in an inclined configuration. In inclined wellbores, drainage occurs not only axially but also laterally. As a result, the drained liquid quickly reaches a wellbore wall before reaching the bottom of foam column. Then, a layer of liquid forms on the low side of the wellbore. The liquid layer flows downward because of gravity and reaches the bottom of the test section without facing the major hydraulic resistance of the foam network. This phenomenon aggravates the drainage process considerably. Although foam-drainage experiments have been reported in the literature, there exists only limited information on the effects of geometry and inclination on foam drainage and stability. The information provided in this paper will help to account for the effect of inclination on foam stability and subsequently improve the performance of oilfield operations involving foam as the working fluid.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3