A New Approach to Simulate Near-Miscible Water-Alternating-Gas Injection for Mixed-Wet Reservoirs

Author:

Alzayer Hassan1,Sohrabi Mehran1

Affiliation:

1. Heriot-Watt University

Abstract

Abstract The oil recovery factor from oil reservoirs must be increased significantly to meet the ever-increasing demand for energy. Majority of oil reserves worldwide (estimated as 60%) are held in carbonate reservoirs. It is believed that most carbonate reservoirs are mixed-wet to oil wet with high variation in wettability within the reservoir rock. Water-Alternating-Gas (WAG) injection is one of the most applicable EOR techniques known to increase oil recovery factor by 8-20% on top of waterflood alone. To maximize recovery from carbonate reservoirs, numerical simulation is the best available tool to aid with such objective. In this paper, we are presenting a new approach to simulate near-miscible water- alternating-gas injection for mixed-wet reservoirs. The coreflood experiment used in this study was performed on a 65mD mixed-wet sandstone core sample at 38°C (100°F) and 12.69 MPa (1840 psia) where calculated Interfacial tension (IFT) between gas and oil at these conditions is 0.04 mN/m. As recorded in the literature, the current simulation capabilities to model WAG injection behaviour is questionable. Some authors suggested that Land’s gas trapping parameter [C] should be variable during the WAG injection process. In this study, we investigated the best way to match the results of WAG injection experiments performed on a mixed-wet core. Matching the full experimental results were not possible without varying gas trapping parameter [C]. However, by updating the gas trapping parameter, based on our suggested procedure, the match between the simulation results and experimental data improved significantly. This paper highlights the shortcomings of the commercial simulators in modelling WAG injection process. The current WAG hysteresis model can be improved based on the information published in this paper for better WAG injection simulation.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3