A Sensitivity Study of Potential CO2 Injection for Enhanced Gas Recovery in Barnett Shale Reservoirs

Author:

Yu Wei1,Al-Shalabi Emad W.1,Sepehrnoori Kamy1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Shale gas production has been gaining worldwide attention over the past several years. This is due to the economic gas reserves using two current advanced technologies that are horizontal drilling and multistage hydraulic fracturing. Shale has a high total organic content (TOC) that may adsorb significant amount of natural gas. In addition, laboratory and theoretical calculations indicate that organic-rich shales adsorb CO2 preferentially over CH4. Hence, the extent of organic matter in shale plays an important role in determining the feasibility of CO2 injection with potential benefit of enhanced gas recovery (EGR). The performance of CO2 injection and CH4 recovery in shale reservoirs is a complex function of several engineering parameters including fracture half-length, fracture conductivity, and fracture height, operating parameters such as injection volume and injection time, and geologic parameters including reservoir permeability, porosity, and thickness. Nevertheless, the effects of the above uncertain parameters on the process of CO2-EGR are not clearly understood and systematically studied. Therefore, it is absolutely critical to quantify uncertainties and investigate the most important influential parameters controlling this process. In this paper, we employ numerical reservoir simulation techniques to model multiple hydraulic fractures and multi-component Langmuir isotherms. Two scenarios for CO2 injection are investigated when the primary gas production decreases to the economic limit: (1) CO2 flooding in two horizontal wells, and (2) CO2 huff-n-puff in a horizontal well. A series of reservoir simulations based on Design of Experiment (DOE) are performed on the best scenario to investigate the critical parameters that control this CO2-EGR process in the Barnett Shale. This work enables operators to plan ahead of time and optimize a tertiary shale gas production process by considering the different investigated influential parameters.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3