The Rules for Achieving High Solubilization of Brine and Oil by Amphiphilic Molecules

Author:

Bourrel M.1,Chambu C.1

Affiliation:

1. Elf Aquitaine (Production)

Abstract

Abstract The oil-recovery effectiveness of a chemical flood has been proved related to the phase behavior of the brine/oil/surfactant system. In particular, it is advantageous to formulate the system so that optimal threephase behavior is obtained. However, it also has been demonstrated that all the optimized systems are not equivalent in terms of solubilization. interfacial tensions (IFT's), and oil-recovery efficiency. This paper addresses the conditions that promote high solubilization in microemulsions, a property correlated to the values of the IFT and therefore correlated to the ability of such systems to displace the oil in porous media. When one formulation parameter is changed, another parameter must be varied at the same time for compensation to reoptimize the system. The mechanism of solubilization is investigated experimentally by considering the usual formulation parameters: salinity, oil type, alcohol type and concentration, and surfactant structure and type (anionics and nonionics). The results are interpreted in terms of interaction energies between surfactant, oil, and water. In particular, the role of the alcohol and its impact on the solubilization by amphiphilic systems are discussed in detail and interpreted. Moreover, the concepts developed in this paper explain the effect of the surfactant structure and therefore aid in the design of amphiphilic molecules exhibiting a high solubilizing power for given conditions of brine, temperature, etc. Introduction Mobilization and transport of residual oil by chemical-flooding processes involve various mechanisms that must be considered when formulating a surfactant slug, but, among them, it is well known that IFT's between phases play a major role. Reed and Healy have shown phases play a major role. Reed and Healy have shown that ultralow IFT's can be attained when a microemulsion phase (surfactant-rich phase, the so-called "middle phase (surfactant-rich phase, the so-called "middle phase") is in equilibrium simultaneously with an oil phase") is in equilibrium simultaneously with an oil phase and a water phase. They first have defined the phase and a water phase. They first have defined the concept of optimal salinity as being the point where the IFT's at the oil-middle phase and middle phase/water interfaces are equal. At that point, the volumes of oil and water solubilized in the middle phase generally are identical, although there is no theoretical basis for that. A correlation between the values of the quantities of oil and water solubilized in the middle phase and the values of the IFT's between the phases also has been found: the lower the tension, the higher the solubilization. Therefore, it appears judicious to start the screening procedure of surfactant systems for enhanced oil procedure of surfactant systems for enhanced oil recovery (EOR) by looking for the point where equal volumes of oil and water are solubilized in the surfactant phase of a three-phase system. During recent years, phase of a three-phase system. During recent years, much time has been devoted to discovering that point, and the rules for compensating changes in the formulation variables have been established for anionic and non-ionic surfactants. We must emphasize that, if we start from an optimized system and we change a formulation variable defining the system, the optimal state is lost, and another formulation variable must be changed to reach a new optimal state. All optimized systems are not equivalent, as shown in previous results, and consideration of the amount of previous results, and consideration of the amount of oil and water solubilized in such systems provides a criterion to compare them. In a previous paper, we carried out a systematic study of the effect of the formulation variables on the solubilization at optimum by anionic surfactants. Some results concerning nonionics have been presented recently presented recently. SPEJ p. 327

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3