Production Optimization in Heavy Oil Recovery Processes

Author:

Temizel Cenk1,Kirmaci Harun2,Inceisci Turgay2,Wijaya Zein3,Zhang Ming4,Balaji Karthik5,Suhag Anuj5,Ranjith Rahul5,Al-Otaibi Basel6,Al-Kouh Ahmad7,Zhu Ying5,Yegin Cengiz8

Affiliation:

1. Aera Energy LLC

2. Turkish Petroleum Corporation

3. HESS

4. University of Akron

5. University of Southern California

6. Kuwait Oil Company

7. Middle East Oilfield Services

8. Texas A&M University

Abstract

Abstract Asphaltene precipitation is caused by numerous factors such as temperature, pressure and compositional vartiations. Drilling, completion, acid stimulation, and hydraulic fracturing activities can also result in settling in the near-wellbore region. Heavier crudes have a fewer precipitation issue becasue of dissolving more asphaltene. Thus, it is crucial to understand the significance of each uncertainty and control variables not only theoretically, but also with application to real-life examples, such as with this model that uses a 32-degree API South American oil to demonstrate the importance of each variable to shed light in order to efficiently manage such reservoirs. A commercial optimization and uncertainty tool is combined with a full-physics commercial simulator, which can create a model to investigate the significance of major factors influencing the performance of wells in temperature-dependent asphaltene precipitation and irreversible flocculation. Temperature-dependent asphaltene precipitation and irreversible flocculation are modelled where no precipitation occurs at the original reservoir temperature, and flocculated asphaltene is allowed to deposit through surface adsorption and pore throat plugging. The exponent in the power law relating porosity reduction to the permeability resistance factor, is modified to change the effect of asphaltene deposition on permeability reduction. Lower temperatures are specified around the wellbore causing asphaltene precipitation. And then, optimization and sensitivity have been performed on major reservoir parameters including well operational parameters, and fluid and rock properties. Moreover, each parameter has been demonstrated in tornado diagrams. It was concluded that employing feasible methods on handling of reservoir uncertainties are as important as management of well operational parameters for effective reservoir management. This study provides an in-depth optimization and uncertainty analysis to outline the significance of each major parameter involved in production performance, and ultimately the recovery efficiency in reservoirs with temperature-dependent asphaltene precipitation and irreversible flocculation.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3