A Novel Approach for Estimating Formation Permeability and Revisiting After-Closure Analysis of Diagnostic Fracture-Injection Tests

Author:

Wang HanYi1,Sharma Mukul M.1

Affiliation:

1. University of Texas at Austin

Abstract

Summary Estimating reservoir-flow capacity is crucial for production estimation, hydraulic-fracturing design, and field development. Laboratory experiments can be used to measure the permeability of rock samples, but the results might not be representative at a field scale because of reservoir heterogeneity and pre-existing natural-fracture systems. Diagnostic fracture-injection tests (DFITs) have now become standard practice to estimate formation pore pressure and formation permeability. However, in low-permeability reservoirs, after-closure radial flow is often absent and this can result in significant uncertainties in interpreting DFIT data. In addition, the established methods for analyzing DFIT data make two oversimplified assumptions: Carter leakoff and constant fracture compliance (or stiffness) during fracture closure. However, both assumptions are violated during fracture closure; therefore, G-function-based models and subsequent related work can lead to an incorrect interpretation and are not capable of consistently fitting both before- and after-closure data coherently. Moreover, current after-closure analysis relies on classic well-test solutions with a constant injection rate. In reality, a “constant injection rate” does not equal “constant leakoff rate into the formation,” because more than 90% of the injected fluid stays inside the fracture at the end of pumping instead of leaking into the formation. The variable leakoff rate clearly violates the constant-rate boundary condition used in existing well-test solutions. In this study, we extend our previous work and derive time-convolution solutions to pressure-transient behavior of a closing fracture with infinite and finite fracture conductivity. We show that the G-function and the square-root-of-time models are only special cases of our general solutions. In addition, we found that after-closure linear-flow and bilinear-flow analysis can be used to infer pore pressure reliably but fail to estimate other parameters correctly. Most importantly, we present a new approach to history match the entire duration of DFIT data to estimate formation-flow capacity, even without knowing closure stress and the roughness properties of the fracture surface. Our approach adds significant value to DFIT interpretation and uncertainty analysis, especially in unconventional reservoirs where the absence of after-closure radial flow is the norm. Two representative field cases are also presented and discussed.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3