An Integrated Machine-Learning Approach to Shale-Gas Supply-Chain Optimization and Refrac Candidate Identification

Author:

Asala Hope I.1,Chebeir Jorge A.1,Manee Vidhyadhar1,Gupta Ipsita1,Dahi–Taleghani Arash2,Romagnoli Jose A.1

Affiliation:

1. Louisiana State University

2. Pennsylvania State University

Abstract

Summary The unsteady recovery of oil and gas prices in early 2017 led to an increase in drilling and hydraulic–fracturing operations in liquid–rich shale plays in North America. As field–development strategies continue to evolve, refracturing and infill–well drilling must be carefully combined to optimize shale–project profitability. Moreover, operators must bear in mind the undulating natural–gas demands persisting in an oversupplied shale–gas environment. In this paper, we use data–driven approaches to predict successful refracturing candidates and local gas demand for the second–tier optimization of a shale–gas supply–chain network. A strategic–planning (SP) model is developed for optimizing the net present value (NPV) of a case–study shale–gas network in the Marcellus Play. This SP model uses a mixed–integer–nonlinear–programming (MINLP) formulation developed in the General Algebraic Modeling System (GAMS, Release 27.1.0.2019). This model relies directly on input from reservoir simulation, local–gas–demand forecast, water–availability forecast, and natural–gas and West Texas Intermediate (WTI) crude–oil price forecasts. Before reservoir simulation, machine learning (ML) is used to predict successful refracturing candidates, using a feed–forward neural network (NN), random–forest (RF) classifier, and a t–distributed stochastic–neighbor–embedding (t–SNE) visualization technique. Using the obtained results, best–practice field–development strategies are implemented in the area of interest (AOI) using reservoir simulation. Local gas demand is forecasted using a long–short–term–memory (LSTM) recurrent NN (RNN) that uses a multivariate data set created from local and global variables affecting shale–gas demand. A water–management structure is also developed for the optimization framework. Using a 300–well data set (with 17 input features), successful refracturing candidates were proposed according to the joint outcome of an optimal 17/23/128/2 feed–forward NN, a t–SNE plot, and a techno–economic review. After ranking F1 scores, the developed NN outperforms the RF and support–vector–machine (SVM) algorithms for frac/refrac–well classification. The developed 32/256/128/120 LSTM model showed at least a 93% (±1%) prediction performance using three or five input features. The results illustrate the ability of the developed LSTM model to accurately predict local gas demands during periods of high or low gas demand. After SP optimization over a 10–year planning horizon, the economic results indicate an NPV of USD 481.945 million, using the proposed physics–data–driven–based approach. An NPV of USD 611.22 million is obtained when no ML was used. The results reveal that the application of ML to strategic planning can prevent erroneous feedback of project profitability while allowing early–time decision making that maximizes shale–asset NPV.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3