Inversion Framework of Reservoir Parameters Based on Deep Autoregressive Surrogate and Continual Learning Strategy

Author:

Zhang Kai1ORCID,Fu Wenhao2ORCID,Zhang Jinding2ORCID,Zhou Wensheng3ORCID,Liu Chen4ORCID,Liu Piyang5ORCID,Zhang Liming2ORCID,Yan Xia2ORCID,Yang Yongfei2ORCID,Sun Hai2ORCID,Yao Jun2ORCID

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum, Qingdao; School of Civil Engineering, Qingdao University of Technology (Corresponding author)

2. School of Petroleum Engineering, China University of Petroleum, Qingdao

3. State Key Laboratory of Offshore Oil Exploitation

4. CNOOC Research Institute Ltd

5. School of Civil Engineering, Qingdao University of Technology

Abstract

Summary History matching is a crucial process that enables the calibration of uncertain parameters of the numerical model to obtain an acceptable match between simulated and observed historical data. However, the implementation of the history-matching algorithm is usually based on iteration, which is a computationally expensive process due to the numerous runs of the simulation. To address this challenge, we propose a surrogate model for simulation based on an autoregressive model combined with a convolutional gated recurrent unit (ConvGRU). The proposed ConvGRU-based autoregressive neural network (ConvGRU-AR-Net) can accurately predict state maps (such as saturation maps) based on spatial and vector data (such as permeability and relative permeability, respectively) in an end-to-end fashion. Furthermore, history matching must be performed multiple times throughout the production cycle of the reservoir to fit the most recent production observations, making continual learning crucial. To enable the surrogate model to quickly learn recent data by transferring experience from previous tasks, an ensemble-based continual learning strategy is used. Together with the proposed neural network–based surrogate model, the randomized maximum likelihood (RML) is used to calibrate uncertain parameters. The proposed method is evaluated using 2D and 3D reservoir models. For both cases, the surrogate inversion framework successfully achieves a reasonable posterior distribution of reservoir parameters and provides a reliable assessment of the reservoir’s behaviors.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3