Numerical Simulation and Modeling of Enhanced Gas Recovery and CO2 Sequestration in Shale Gas Reservoirs: A Feasibility Study

Author:

Kalantari-Dahaghi A..1

Affiliation:

1. West Virginia University

Abstract

Abstract The process of modeling ultra low permeability and desorption-controlled shale gas reservoirs has always been challenging. Desorption is an important issue in recovery of many shale plays. Although a large amount of gas in place comes from adsorbed gas, ultra tight matrix and high bottom hole pressure may not allow this gas be produced. In this paper, an integrated workflow is described, which demonstrates a quantitative platform for shale gas production optimization through capturing the essential characteristics of shale gas reservoirs. Because organic matter has a greater sorption affinity for CO2 than methane, a comprehensive feasibility study has been performed to evaluate the applicability and significance of CO2 injection (with simultaneous production of methane) on expedition of desorption process and also CO2 sequestration in shale. Modeling of complex fracture networks is a very important step in simulation of shale reservoirs. Discrete fracture network (DFN) models can be used to generate and validate multiple realizations for a quantitative measure of uncertainty. A 3-D discrete fracture network using typical shale properties was generated stochastically, based on different realizations (homogenous and heterogeneous fracture properties). The complex DFNs were upscaled in order to simulate fluid flow through the system. In addition, hydraulic fractures were introduced to the model. Sensitivity analysis has been performed on key matrix and fracture properties for both natural and hydraulic fractures. Numerical simulation was performed using appropriate gridding (logarithmic local grid refinement around the hydraulic fractures) and, in order to capture long transient gas flow from matrix to fracture, multi porosity model with matrix sub grids has been employed. This step was followed by a history matching process and the fracture and reservoir properties were varied within a range that appears consistent with actual typical shale gas well performance. One model, which gave a better approximation of the actual production profile, was selected for CO2 injection study. In order to understand the economic effect of matrix swelling on permeability and injectivity in the presence of CO2, different injection strategies (patterns, injection time interval and rate) were defined in order to recommend the best scenario for maximum and economic recovery.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3