Automated Technology Improved the Efficiency of Directional Drilling in Extended Reach Wells in Saudi Arabia

Author:

Kragjcek Roberto H.1,Al-Dossary Abdullah1,Kotb Waleed2,Al Gamal Abdelsattar2

Affiliation:

1. Saudi Aramco

2. Wildcat-Tanajib

Abstract

AbstractWith the focus on continuous drilling optimization, a collaborative effort was implemented to analyze and assess drilling challenges encountered while drilling extended horizontal wells in the Khurais field in Saudi Arabia. The primary requirement was to enhance the efficiency of conventional downhole motor directional drilling systems in the challenging horizontal reservoir section.The Khurais field is located in a remote area in the central part of Saudi Arabia approximately 200 km from the Saudi capital Riyadh, and 300 km from the Eastern port city of Dammam. The producer wells are drilled in the middle of the field and the water injector wells are drilled close to the field boundaries.An average of 12 rigs worked simultaneously throughout the duration of the project to drill and complete the required increment wells. The horizontal wells are comprised of the producers, trilateral producers and power water injectors. The wells were drilled to an averaged measured depth of 14,000 ft, with an average of 6,500 ft of open hole section across the reservoir. The 6⅛" horizontal hole section is particularly challenging and is drilled with steerable mud motors with the assistance of real time geosteering and logging while drilling (LWD) tools to maintain the horizontal open hole section of the well close to the top of the reservoir within a window of 3 ft.The fracture intervals coupled with high permeability makes the drilling of this section particularly challenging, as mud losses are frequently encountered in this section. The main difficulties to improve the efficiency of the directional drilling process were high drag and differential sticking.To overcome the challenges mentioned above, the drilling team utilized a new sliding technology that interacts with the drilling rig top drive to break the static friction improving the weight transfer to the bit, and thereby increase the rate of penetration (ROP). Through the virtual elimination of differential sticking and reduction of buckling problems, this system smoothly helps to deliver weight down to the bit. Additional benefits of this innovative technology are the prevention of stalling of the mud-motor, steady orientation of tool face and easier steering.The authors will describe the innovative system utilized to improve the ROP during the sliding process by almost 50% and will present real cases supported by field data. They will also illustrate the importance of post-actions review and rig crew training in the achievement of record ROP in sliding mode. Historical cases will be presented and the benefits of the application of this technology in these wells will be explained.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3