Estimating Dynamical Mineral Dissolution for Co2 Injection Into Saline Aquifers Utilizing Deep Learning in the Ahuroa Saline Aquifer

Author:

Katterbauer Klemens1,Al Shehri Abdallah1,Qasim Abdulaziz1,Yousef Ali1

Affiliation:

1. Saudi Aramco, Dhahran, Eastern Province, Saudi Arabia

Abstract

Abstract The geological carbon storage (GCS) in subsurface environments, such as deep permeable saline formations, is one of the achievable methods for carbon dioxide storage. There are several commercial projects such as the Sleipner field in Norway, and in Salah in Algeria have demonstrated that carbon dioxide can be safely stored in these reservoirs. The natural environments are capable to store CO2 on geologic time scales, that is mostly caused by solubility trapping. While the geological, physical and chemical conditions for the escape of CO2 are still in the research phase and how CO2 can be efficiently stored, there are several important features that represent prerequisites for the efficient storage (Xu, et al. 2017). A core prerequisite is the availability of sufficient porosity in order to accommodate the desired volumes of carbon dioxide, and the presence of a continuous cap rock that is impermeable to CO2. Deep saline reservoirs are attractive candidates for the geological storage and based on the deep geologic storage temperature and pressure, the CO2 is typically in a supercritical but stable state. The challenge is that the introduction of CO2 into the reservoir may lead to a geochemical process which acidifies the brine via CO2 dissolution. Furthermore, the mineral surfaces are dehydrated by the dispersing CO2 phase. Experimental and field studies indicate that the geochemical reactions caused by the injection of CO2 may vary significantly between different rock types and brine compositions (Michael, et al. 2010). The low permeability of the cap rock, such as shale, have demonstrated to be reactive for higher temperature ranges, which poses additional challenges for the CO2 storage process. The dissolution and re-precipitation of carbonate minerals, and the dissolution of feldspars are generally observed for these CO2 storage reservoir sites that additionally encounter challenges related to the precipitation of clay minerals. This implies that the dissolution and secondary mineral precipitation caused by the injection of CO2 have a major impact on the porosity and permeability of the reservoir environment as well as impact the cap rock integrity (Jiang, et al. 2014).

Publisher

SPE

Reference13 articles.

1. A review of CO 2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches;Ajayi;Petroleum Science,2019

2. CO2 storage capacity estimation: Methodology and gaps;Bachu;International journal of greenhouse gas control,2007

3. GSNZ SPV1 Ltd Ahuroa B Gas Storage Facility Monitoring Programme Annual Report;Council,2019

4. Integrated geophysical, petrophysical and petrographical characterization of the carbonate and clastic reservoirs of the Waihapa Field, Taranaki Basin, New Zealand;Elmahdy;Marine and Petroleum Geology,2023

5. Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks;Gaus;International journal of greenhouse gas control,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3