Optimizing Refracturing Models in Tight Oil Reservoirs: An Integrated Workflow of Geology and Engineering Based on Seepage-Stress Real-Time Cross-Coupling Strategy

Author:

Ren Jiawei1,Chen Junbin2,Lu Hongjun3,Bai Xiaohu3,Yu Wei4

Affiliation:

1. College of Petroleum Engineering, Xi’an Shiyou University / Oil & Gas Technology Research Institute, PetroChina Changqing Oilfield Company

2. College of Petroleum Engineering, Xi’an Shiyou University (Corresponding author)

3. Oil & Gas Technology Research Institute, PetroChina Changqing Oilfield Company

4. SimTech LLC

Abstract

Summary Integrated modeling of refracturing is a comprehensive and complex task for engineers involved in field development, especially in previously developed mature fields. The modeling process requires consideration of numerous factors to accurately predict fracture propagation patterns during refracturing and production. During the initial fracturing process, hydraulic fractures generate an altered induced stress field. Later, during the post-fracturing production process, hydrocarbon extraction causes formation pore pressure depletion, leading to further alterations in the stress field. However, due to the complexity of these phenomena, most existing workflows simplify the coupled simulation problems of stresses at different stages in the modeling process. Consequently, this often results in questionable hydraulic fracture geometries during refracturing and suboptimal refracturing designs. The goal of this study is to develop a novel integrated workflow for refracturing, specifically tailored for complex fracture networks in tight oil reservoirs. This model incorporates the hydraulic fracture propagation process during the initial fracturing and dynamic stress changes during the initial production process. It employs artificial intelligence algorithms to calibrate the wellhead treating pressure using a physics-based model, enabling a better understanding of the initial fracturing fracture geometries. The production history match is then conducted based on the initially calibrated hydraulic fracture geometries, preserving the precision of the original fracture geometry. In addition, geomechanics modeling is conducted to obtain dynamic stress changes during the initial production process. For the refracturing design, the fracture propagation model for the refracturing process is later conducted on the depleted stress field. Following a 240-day period after refracturing, the production history is matched using an artificial intelligence–assisted reservoir simulator. Our results indicate that, due to prolonged production, significant changes occur in the stress field during the initial development period, with an average horizontal stress deviation angle of approximately 35° in the near-well zone. With the combined influence of the changing stress field and natural fractures, refracturing results in longer and more complex hydraulic fracture geometries, ultimately increasing individual well production.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3