Evaluation of Different Numerical Techniques for Accurate Modelling of Tracer Flow in Porous Media

Author:

Yaralidarani Muhammad1,Aghabozorgi Shokoufeh1,Farzaneh Seyed Amir1,Sohrabi Mehran1

Affiliation:

1. Heriot-Watt University

Abstract

Abstract Inter-well tracer tests have numerous applications in determining the volumetric sweep, levels of heterogeneity, and delineation of flow barriers such as the faults in subsurface in reservoirs. Tracer tests are also performed in the laboratory to determine core samples’ heterogeneity. Simulation of physical dispersion requires refined models, which inevitably increase the numerical dispersion in the obtained results. In this paper, we quantify the numerical dispersion associated with various techniques available for the simulation of tracer flow. Numerical dispersion in the simulations can be quantified by comparing the simulation results with the experimental data. For this purpose, we first reviewed the fundamentals of tracer flow and introduced the Convection-dispersion equation as a basic model to describe tracer flow in porous media. Then we constructed a refined model to simulate a series of tracer flood scenarios. A detailed sensitivity analysis was carried out in a systematic manner to specify the individual impact of physical and numerical dispersion. Finally, we modelled tracer experiments performed on Indiana Limestone (IL) carbonate rocks to examine the accuracy of Fick's and Darcy's equations, and the results are presented. The impact of both numerical (non-physical) and physical dispersion was examined during the core scale simulations. It was concluded that the numerical TVD algorithm (embedded within the commercial ECLIPSE software) can appropriately model the tracer flow in porous media with minimal numerical errors during simulations. It was also shown that physical dispersion significantly affects tracer test results and that it must be considered when simulating tracer flows by defining an appropriate Peclet number. Finally, the results showed that solving the conventional convection-dispersion equation along with the numerical TVD algorithm can perfectly match the experimental data of several tracer flood tests performed on outcrop Indiana limestone core samples.

Publisher

SPE

Reference27 articles.

1. Movement of contaminants in groundwater: Groundwater transport-advection and dispersion;ANDERSON;Groundwater contamination,,1984

2. On the tensor form of dispersion in porous media;BEAR;Journal of Geophysical Research,1961

3. Dynamics of fluids in porous media. Elsevier, New York. Dynamics of fluids in porous media;BEAR,1972

4. Chemical tracer retention in porous media;BREITENBACH,1982

5. Groundwater hydraulics and pollutant transport;CHARBENEAU,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3