Affiliation:
1. University of Texas at Austin
2. Shell Canada
Abstract
Summary
Application of thermal and solvent enhanced-oil-recovery (EOR) technologies for viscous heavy-oil recovery in naturally fractured reservoirs is generally challenging because of low permeability, unfavorable wettability and mobility, and considerable heat losses. Vapor/oil gravity drainage (VOGD) is a modified solvent-only injection technology, targeted at improving viscous oil recovery in fractured reservoirs. It uses high fluid conductivity in vertical fractures to rapidly establish a large solvent/oil contact area and eliminates the need for massive energy and water inputs, compared with thermal processes, by operating at significantly lower temperatures with no water requirement. An investigation of the effects of solvent-injection rate, temperature, and solvent type [n-butane and dichloromethane (DCM)] on the recovery profile was performed on a single-fracture core model. This work combines the knowledge obtained from experimental investigation and analytical modeling using the Butler correlation (Das and Butler 1999) with validated fluid-property models to understand the relative importance of various recovery mechanisms behind VOGD—namely, molecular diffusion, asphaltene precipitation and deposition, capillarity, and viscosity reduction.
Experimental and analytical model studies indicated that molecular diffusion, convective dispersion, viscosity reduction by means of solvent dissolution, and gravity drainage are dominant phenomena in the recovery process. Material-balance analysis indicated limited asphaltene precipitation. High fluid transmissibility in the fracture along with gravity drainage led to early solvent breakthroughs and oil recoveries as high as 75% of original oil in place (OOIP). Injecting butane at a higher rate and operating temperature enhanced the solvent-vapor rate inside the core, leading to the highest ultimate recovery. Increasing the operating temperature alone did not improve ultimate recovery because of decreased solvent solubility in the oil. Although with DCM, lower asphaltene precipitation should maximize the oil-recovery rate, its higher solvent (vapor)/oil interfacial tension (IFT) resulted in lower ultimate recovery than butane. Ideal density and nonideal double-log viscosity-mixing rules along with molecular diffusivity as a power function of oil viscosity were used to obtain an accurate physical description of the fluids for modeling solvent/oil behavior. With critical phenomena such as capillarity and asphaltene precipitation missing, the Butler analytical model underpredicts recovery rates by as much as 70%.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献