Big-Data Analytics for Production-Data Classification Using Feature Detection: Application to Restimulation-Candidate Selection

Author:

Udegbe Egbadon1,Morgan Eugene1,Srinivasan Sanjay1

Affiliation:

1. Pennsylvania State University

Abstract

Summary In recent years, there has been a proliferation of massive subsurface data sets from sources such as instrumented wells. This places significant challenges on traditional production-data-analysis methods for extracting useful information in support of reservoir management and decision making. In addition, with increased exploration interest in unconventional-shale-gas reservoirs, there is a heightened need for improved techniques and technologies to enhance the understanding of induced- and natural-fracture characteristics in the subsurface, as well as their associated effects on fluid flow and well performance. These challenges have the potential to be addressed by developing big-data-analytics tools that focus on uncovering masked trends related to fracture properties from large volumes of subsurface data through the application of pattern-recognition techniques. We present a new framework for fast and robust production-data classification, which is adapted from a real-time face-detection algorithm. This is achieved by generalizing production data as vectorized 1D images with pixel values proportional to rate magnitudes. Using simulated shale-gas-production data, we train a cascade of boosted binary classification models that are capable of providing probabilistic predictions. We demonstrate the viability of this approach for identifying hydraulically fractured wells that have the potential to benefit from restimulation treatment. The results show significant improvements over existing type-curve-based approaches for recognizing favorable-candidate wells, using only gas-rate profiles.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3