Geomechanical Study and Wellbore Stability Analysis for Potential CO2 Storage into Devonian and Silurian Formations of Delaware Basin

Author:

Nguyen Son Truong1,Nguyen Tan Cong1,Yoo Hyunsang1,El-kaseeh George2

Affiliation:

1. New Mexico Institute of Mining and Technology

2. NMT Petroleum Recovery Research Center

Abstract

AbstractThe objective of this project is to construct a 1D mechanical earth model for the prospective geological sequestration of carbon dioxide (CO2) into carbonate formations. The study sustains a pivotal role in analyzing the possible wellbore instabilities for drilling deep injection wells. Besides, the developed model can be essentially used to evaluate the caprock integrity for long-term CO2 storage and provide the primary analytical assessment of fault slip potential.This paper describes the extensive construction of a geomechanical model to achieve three ultimate goals. A variety of petrophysical interpretations, shear wave velocity modeling, and Mogi-Coulomb failure criterion are initially established to deliver a safe drilling mud weight window for overpressure ramps in the Delaware basin, a sub-basin of the Permian. Using the dependable outputs of rock properties and strengths, top seal quality is subsequently determined by calculation of the brittleness index and critical pressure of tensile failure. Finally, pore pressure, shear stress, friction angle, and in-situ stresses are integrated to predict maximum sustainable injection pressures for preliminary fault slip analysis in deep aquifer carbonate rocks.Two distinct overpressured zones of Wolfcamp and Barnett Shale are identified for wellbore instability based on pore pressure and fracture gradient prediction. These pressure ramps have a lower compressive strength, which causes the collapse pressure to exceed the pore pressure and serve as the lower bound of drilling mud weight. The wellbore stability simulation also shows low brittleness indices and high threshold breakdown pressures for Woodford shale caprock. It implies that the caprock may be more resistant to fracture growth and failure, indicating an effective top seal above the injected reservoirs. Meanwhile, close observation may be purposefully monitored to assess the fault slip potential in Devonian and Silurian formations once the critical injected fluid pressure approaches the projected threshold from the analytical computation.The findings from this study will be useful in further understanding wellbore stability under drilling practices and CO2 sequestration. The appropriate application can support optimizing the casing and drilling mud weight design while also modifying the injection fluid pressure. Furthermore, the estimated rock properties, formation pressure, and principal stresses will be significant elements in building a hydrodynamic simulation of gas plume distributions after certain injection years.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3