Real-Time Solution for Down Hole Torque Estimation and Drilling Optimization in High Deviated Wells Using Artificial Intelligence

Author:

Elzenary Mahmoud Nader1

Affiliation:

1. Senior Manager Operation Efficiency, Aramco Rowan Offshore Drilling Co. KFUPM-Ph.D. Researcher, Saudi Aramco Rowan Offshore Drilling Co.

Abstract

AbstractThis project provides a new realistic solution for the accuracy of down hole torque measurements using the integration of the Artificial intelligence (AI) technology with the downhole challenges being faced while drilling deep and high deviated wells. The new estimates are based on surface measurements which have the major influence on the bit torque (downhole torque) values while drilling. Artificial intelligence technology and its related applications such as; artificial neural network (ANN), support vector machine (SVM) and adaptive neuro fuzzy interference system (ANFIS) will be utilized to predict and estimate accurate wellbore torque which will be applied effectively to prevent real time stuck pipe situation through a friendly user software which will maintain the downhole torque within the SAFE zone by controlling the unified surface drilling variables such as; weight on bit (WOB), Rate of Penetration (ROP) and Flow Rate.This downhole torque model will be validated and verified through a real drilling scenario from a field in north of Africa. The field data includes weight on bit, surface torque, stand-pipe pressure, and rate of penetration were collected from the mentioned well which had experienced a costly stuck pipe situation. However, with the provided model the same encountered scenario will be avoided, due to the optimization of the real time drilling variables and hence, saving the well and evade a costly non-productive time.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3