Modeling Rate of Penetration for Deviated Wells Using Artificial Neural Network

Author:

Abbas Ahmed K.1,Rushdi Salih2,Alsaba Mortadha3

Affiliation:

1. Iraqi Drilling Company

2. University of Al-Qadisiyah

3. Australian College of Kuwait

Abstract

Abstract The advanced technology has made directional drilling widely used to enhance the production of mature fields. The rate of penetration (ROP) contributes strongly towards the cost of drilling operations, where achieving higher ROP leads to substantial cost saving. The main objective of this study is to develop a model that predicts the ROP for deviated wells using artificial neural networks (ANNs). The model was developed based on the most critical variables affecting ROP using ANNs. In addition to the azimuth and inclination of the well trajectory, the controllable drilling parameters, unconfined compressive strength (UCS), pore pressure, and in-situ stresses of the studied area were included as inputs. 1D Mechanical earth modeling (1D-MEM) data, geophysical logs, daily drilling reports, and mud logs (master logs) of deviated wells drilled in Zubair field located in Southern Iraq were used to develop the ANN model. The results displayed that the ANN’s outputs are close to the measured field data. The correlation coefficient (R) and average absolute percentage error (AAPE) were over 0.91 and 8.3%, respectively, for the training dataset. For testing data, the developed model achieved a reasonable correlation coefficient (R) of 0.89 and average absolute percentage error (AAPE) of 9.6%. Unlike previous studies, this paper investigates the effect of well trajectory’s (azimuth and inclination) and their influence on the ROP for deviated wells. The major advantage of the present study is calculating approximately the drilling time of the deviated well and eventually reducing the drilling cost for future neighboring wells.

Publisher

SPE

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3