Chemical Enhanced Oil Recovery and the Dilemma of More and Cleaner Energy

Author:

Farajzadeh Rouhi1,Eftekhari Ali Akbar2,Kahrobaei Siavash3,Mjeni Rifaat4,Boersma Diederik3,Bruining Hans1

Affiliation:

1. Delft University of Technology

2. Technical University of Denmark

3. Shell Global Solutions International

4. Petroleum Development Oman

Abstract

AbstractWe develop a method based on concept of exergy-return on exergy-investment (ERoEI) to determine the energy efficiency and CO2 footprint of polymer and surfactant enhanced oil recovery (EOR). This integrated approach considers main surface and subsurface elements of the chemical EOR methods. The main energy investment in oil recovery by water injection is mainly related to circulation of water with respect to exergy of the oil produced. At large water cuts of >90%, more than 70% of the total invested energy is spent on pumping the fluids. Consequently, production of barrels of oil is associated with large amounts of CO2 emission for mature oil fields with large water cuts. Our analysis shows that injection of polymer increases the energy efficiency of the oil recovery system. Because of additional oil (exergy gain) and less water circulation (exergy investment), the project-time averaged energy invested (and consequently CO2 emitted) to produce one barrel of oil from polymer flooding is less than that of the water flooding at large water cuts. We conclude that polymer injection into reservoirs with high water cut can be a solution for two major challenges of the transition period: (1) meet the global energy demand via an increase in oil recovery and (2) reduce the CO2 footprint of oil production (more and cleaner oil). For surfactant-polymer EOR, the extent of improvement in energy efficiency depends on the incremental gain and the simplicity of the formulations.

Publisher

SPE

Reference35 articles.

1. Natural gas: fuel for the 21st century;Smil,2015

2. Nuclear energy: principles, practices, and prospects;Bodansky,2008

3. The Economics of Evaluating Water Projects;Johansson,2012

4. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation;Ferroni;Energy policy,2016

5. Sustainable production of hydrocarbon fields guided by full-cycle exergy analysis;Farajzadeh;J. Pet. Sci. Eng,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3