A Comparative Study for Deep-Learning-Based Methods for Automated Reservoir Simulation

Author:

Maarouf Alaa1,Tahir Sofiane2,Su Shi1,Kada Kloucha Chakib2,Mustapha Hussein1

Affiliation:

1. SLB

2. ADNOC Upstream

Abstract

Abstract Reservoir simulation is essential for various reservoir engineering processes such as history matching and field development plan optimization but is typically an intensive and time-consuming process. The aim of this study is to compare various deep-learning algorithms for constructing a machine-learning (ML) proxy model, which reproduces the behavior of a reservoir simulator and results in significant speedup compared to running the numerical simulator. Initially, we generate an ensemble of realizations via the reservoir simulator to train the different ML algorithms. The data set consists of a comprehensive set of uncertainty parameters and the corresponding simulation data across all wells. The system utilizes recent advances in deep learning based on deep neural networks, convolutional neural networks, and autoencoders to create machine-learning-based proxy models that predict production and injection profiles as well as the bottomhole pressure of all wells. Thus, the proposed workflows replace the time-consuming simulation process with fast and efficient proxy models. In this work we provide a comparative study of various ML-based algorithms utilizing deep neural networks and convolutional neural networks for constructing a surrogate reservoir model. The trained models can simulate the behavior of the physics-based reservoir simulator by correlating uncertainty parameters to various history-matched reservoir properties. The algorithms were tested on a mature oilfield with a notable number of wells and several decades of production and injection data. We analyze the performance of each ML approach and provide recommendations on the optimal one. The best performing workflow for building the ML proxy model consists of two steps. The first step uses stacked autoencoders to learn a low-dimensional latent space representation of the highly dimensional simulation data. This step allows to reduce the complexity of predicting the simulation data and enhances the prediction quality. The following step constructs an ML model to predict the latent space features from input uncertainty parameters and produces highly accurate results. Reservoir simulation is of paramount importance for various reservoir engineering workflows. Traditional approaches require running physics-based simulators for multiple iterations, which results in time-consuming and labor-intensive processes. We implement and compare several deep-learning-based methods to construct ML proxy models that automate and remarkably reduce the runtime of the reservoir simulation process.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3