Phase Behaviour and Physical Property Measurements for VAPEX Solvents: Part II. Propane, Carbon Dioxide and Athabasca Bitumen

Author:

Badamchi-Zadeh A.1,Yarranton H.W.1,Maini B.B.1,Satyro M.A.1

Affiliation:

1. University of Calgary

Abstract

Abstract The solubility of pure carbon dioxide in Athabasca bitumen was measured and compared with the literature data. Multiple liquid phases were observed at carbon dioxide contents above approximately 12 wt%. A correlation based on Henry's law was found to fit the saturation pressures at carbon dioxide contents below 12 wt%. The saturation pressure and solubility of carbon dioxide and propane in Athabasca bitumen, as well as the liquid phase densities and viscosities, were measured for three ternary mixtures at temperatures from 10 to 25 °C. Two liquid phases (carbon dioxide-rich and bitumen-rich) were observed at 13 wt% carbon dioxide and 19 wt% propane. Only liquid and vapour-liquid regions were observed for the other two mixtures (13.5 wt% propane and 11.0 wt% carbon dioxide; 24.0 wt% propane and 6.2 wt% carbon dioxide). The saturation pressures for the latter mixtures were predicted using the correlation for the carbon dioxide partial pressure and a previously developed correlation for the propane partial pressure. The mixture viscosities were predicted with the Lobe mixing rule. Introduction In Part I of this work(1), mixtures of carbon dioxide and propane were identified as a potential solvent for the VAPEX process. At typical heavy oil reservoir conditions (pressure of ~1.2 MPa and temperature of ~10 °C), propane and butane have sufficient solubility to reduce the oil viscosity to a level where gravity drainage can occur in an economic time scale. However, propane and butane are expensive solvents and the success of the process depends on how much solvent can be recovered. As well, the VAPEX process operates below the saturation pressure of the solvent and, therefore, propane and butane cannot be used at higher reservoir pressures where they exist only in the liquid phase. Methane can be added to achieve the desired pressures(2). However, carbon dioxide may also be a better VAPEX solvent than methane because it is more soluble in heavy oil and significantly reduces the viscosity(3). Mixtures of carbon dioxide and propane may achieve the desired reduction in viscosity while minimizing the required propane volumes. Hence, there is an incentive to evaluate mixtures of carbon dioxide and propane as a VAPEX solvent. VAPEX performance depends on the viscosity and density of the liquid phase that forms at the edge of the vapour chamber. In order to design and optimize VAPEX and other solvent-based processes, it is critical to be able to determine the diffusivity of the solvent in the heavy oil, identify the phases that form in the solvent and heavy oil mixtures at various temperatures and pressures, and determine the density and viscosity of the liquid phase. Other solvent-based processes (steam and solvent injection for heavy oil recovery and solvent extraction of oil sands) require similar data. In Part I of this work(1), saturation pressures and liquid phase densities and viscosities were measured for propane and Athabasca bitumen. There are also considerable data in the literature for mixtures of carbon dioxide and crude oils. Simon and Graue(4) measured the solubility, swelling and viscosity of mixtures of carbon dioxide and nine different oils.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3