Application of Variational Principles to Cap and Base Rock Heat Losses

Author:

Chase C.A.1,O'Dell P.M.1

Affiliation:

1. Shell Development Co.

Abstract

Abstract Variational principles stated by, Biot have been applied to obtain a two-parameter (approximation for heat losses to cap and base rock from a reservoir undergoing thermal recovery. The approximation predicts heat losses to within a few percent of the predicts heat losses to within a few percent of the exact value when the beat losses result from one-dimensional conduction into cap and base rock in the direction normal to the reservoir boundary surfaces. Conduction in the longitudinal direction is neglected. Therefore, the approximate temperature distribution is valid only when the temperature gradient in this direction is small. But because the Peclet number (ratio of convective to conductive heat transport) is high in most reservoir thermal processes, the horizontal temperature gradient will processes, the horizontal temperature gradient will be small everywhere except in the vicinity of a thermal front, and the approximation will be valid. Comparison with a finite-difference solution in cap and base rock shows that reasonable accuracy is obtained when the Peclet number is 100 or greater. The variation solution has been incorporated into our thermal simulator and yields a considerable sailings in core storage. It is no longer necessary to store grid-block temperatures for cap and base rock nor to solve the finite-difference form of the energy balance in this region. Instead a system of two nonlinear ordinary differential equations must be solved for each grid block at the interface of the reservoir and the cap rock. In addition to savings in core storage, a reduction in computation time is achieved because fewer finite-difference grid blocks are needed. Introduction Heat losses to cap and base rock must be considered in modeling thermal processes in petroleum reservoirs. Since there is no mass petroleum reservoirs. Since there is no mass transport in the cap and base rock, the only mechanism for heat transfer is conduction. One of the most obvious ways of determining heat losses from the reservoir is to solve the energy equation in the cap- and base-rock region by finite differences. To do this, the reservoir finite-difference grid must be extended into the cap- and base-rock region. This can consume a good deal of computer core storage - at a time when all available core storage is needed to adequately model mass and energy transport in the reservoir region. Furthermore, since there is no mass transport in the cap and base rock, one would like to eliminate having to solve the conservation-of-mass equations in this region, but to do so requires a special computer code. Hence, a finite-difference solution can be costly. It does, however, have the advantage of generality in that a minimum of assumptions is involved in formulating the conservation equations. There are ways of calculating heat losses to cap and base rock other than by finite differences. However, for a method to be competitive with the finite-difference method, it must offer some advantage such as accuracy, reduced computer core storage, or lower computation time. One alternative to finite differences is the use of superposition to couple an analytic solution for the cap and base-rock temperature distribution with the finite-difference solution of the reservoir energy balance. But, during the course of the simulation, the superposition principle would necessitate having temperature data for all previous time steps for each grid block adjacent to the cap and base rock. This requires an appreciable amount of computer core storage, perhaps even more than would be required for a complete finite-difference solution. Hence, this method does not seem attractive. The use of variational principles appeared to offer the advantages of both reduced core storage and lower computation time and was therefore considered as a means of treating heat losses to cap and base rock. The advantage of the variational method is that a priori knowledge of the approximate shape of the temperature profile can be used to choose the functional form of the temperature distribution. The chosen functional form will contain several free parameters. SPEJ P. 200

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applicability of heat-exchanger theory to estimate heat losses to surrounding formations in a thermal flood;Journal of Petroleum Exploration and Production Technology;2019-11-02

2. Insights into heat transport for thermal oil recovery;Journal of Petroleum Science and Engineering;2017-03

3. Steam Flooding;Enhanced Oil Recovery Field Case Studies;2013

4. Optimal control of three-dimensional steamflooding processes;Journal of Petroleum Science and Engineering;1994-06

5. A model for the transient temperature effects of horizontal fluid flow in geothermal systems;Journal of Volcanology and Geothermal Research;1986-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3