Computer-Aided Design for a Multilateral Well Completion in a Stacked Reservoir

Author:

Bamgboye Faith A.1,Longe Promise O.2,Oriji Boniface A.3

Affiliation:

1. Federal University of Petroleum Resources Effurun, Nigeria

2. University of Kansas, Lawrence, USA

3. University of Port Harcourt

Abstract

Abstract Over the years, multilateral well technology has been one of the most rapidly evolving and widely utilized production technologies for new and maturing reservoirs. Multilateral wells have the potential for reservoir productivity improvement. The characteristics used to evaluate multilateral well completion are connectivity, isolation, and accessibility. All these focus on the completion design of the main bore, lateral bores, and junctions that connect the lateral and main bores. Hence, one of the factors to consider in designing multilateral wells is the junction type, which depends on the required degree of mechanical integrity and pressure integrity at each lateral. Previous studies establish that the lateral junctions are a critical element of multilateral completions and can fail under formation stresses, temperature-induced forces, and differential pressures during production. Thus, the reliability of a multilateral completion design is the ability to construct and complete the multilateral junction successfully. The Technology Advancement of Multilaterals (TAML) has categorized the distinct types of multilateral junctions based on support and hydraulic integrity provided at the junction. The objectives of this paper are: (1) to provide a detailed discussion on each classification level and the conditions in which they are applicable, (2) to present a conceptually digitized application of a multilateral well on a stacked reservoir XXXX in a Niger Delta field using SEPAL software. To achieve the latter goal, after a preliminary and detailed casing design, we applied the SEPAL software to design and digitize the proposed multilateral well schematics for the stacked reservoir. From the analysis, a multilateral level 5 junction was selected to overcome specific problems (e.g., wellbore collapse) due to the unconsolidated sands of the reservoir in the field of interest.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3