Design of Laboratory Models for Study of Miscible Displacement

Author:

Pozzi Anthony L.1,Blackwell Robert J.1

Affiliation:

1. Humble Oil And Refining Co.

Abstract

Abstract Scaled laboratory-model studies provide a powerful method for evaluation of a proposed oil-recovery process. In recent years, models have been used extensively to evaluate processes in which solvents displace oil, both for general cases and for specific reservoir conditions. Since the performance of a miscible flood in a horizontal reservoir can be significantly affected by transverse mixing between solvent and oil, this displacement mechanism must be accurately simulated in the scaled model studies. Unfortunately, precise scaling of transverse dispersion coupled with the requirement of geometric similarity requires impractically large laboratory models and long times for experiments.If scaling requirements for miscible displacements could be relaxed while accurate simulation of essential displacement mechanisms is maintained, the utility of model studies would be greatly enhanced. The purpose of the work reported herein was to evaluate the relative importance of various mechanisms affecting miscible displacement and to ascertain whether the essential features of the displacement process can be simulated even though some scaling groups are not satisfied. These studies were performed with completely miscible systems in linear, horizontal models packed with unconsolidated media.From the experimental results, a set of relaxed scaling criteria was formulated which allows the requirements of geometric similarity and equality of the ratio of viscous to gravity forces to be omitted for specified conditions. The relaxed criteria are valid whether transverse mixing is by molecular diffusion or by convective dispersion.Correlations which permit prediction of vertical sweep efficiencies in linear, horizontal reservoirs were developed from the experimental data when transverse mixing is by molecular diffusion, These same correlations may be used when transverse mixing is by convective dispersion if an empirically defined, effective, transverse dispersion coefficient is used in the description of the mixing process. The effective transverse dispersion coefficient correlation essentially duplicates the dispersion coefficient correlation for equal-viscosity, equal-density fluid systems. Experimental values for the effective transverse dispersion coefficient can be measured readily. Introduction One of the most effective methods for evaluation of miscible-displacement oil-recovery processes is that of displacements in laboratory models scaled to simulate reservoir conditions. For these laboratory studies to be meaningful, however, the essential displacement mechanisms affecting reservoir performance must be accurately simulated.Since the performance of a miscible flood in horizontal reservoirs, or in dipping reservoirs at high rates, can be significantly affected by transverse mixing of solvent and oil, this mechanism must be considered in the design of laboratory experiments. Unfortunately, precise scaling of transverse dispersion coupled with the requirement of geometric similarity requires impracticality large laboratory models and long experiment times. This difficulty seriously limits the utility of laboratory model studies.Craig, et al, demonstrated that geometric similarity is not required when mixing is unimportant. Their experimental data indicate, for the cases studied, that the displacement is sufficiently characterized by scaling the ratio of viscous-to-gravitational forces. This work suggests that relaxation of the requirement of geometric similarity and, possibly, other criteria might also be permissible when mixing is important, provided suitable groups describing the mixing process are scaled.The purpose of the work reported here was to evaluate the relative importance of various mechanisms affecting miscible displacement and to ascertain whether the essential features of the displacement process can be simulated even though some scaling groups are not satisfied. SPEJ P. 28^

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Reservoir Development;2022

2. Field guidelines;Reservoir Development;2022

3. Scaling Experimental Immiscible Flow and Geomechanics in Fractured Porous Rock;Experimental Mechanics of Fractured Porous Rocks;2022

4. DEVELOPMENT OF SCALING CRITERIA FOR WATERFLOODING AND IMMISCIBLE CO2 FLOODING IN TIGHT FORMATIONS;Journal of Porous Media;2019

5. Miscible Displacement Processes;Enhanced Oil Recovery;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3