Modeling of Hydraulic Fracture Network Propagation in a Naturally Fractured Formation

Author:

Weng X..1,Kresse O..1,Cohen C..1,Wu R..1,Gu H..1

Affiliation:

1. Schlumberger

Abstract

Abstract Hydraulic fracturing in shale gas reservoirs has often resulted in complex fracture network growth, as evidenced by microseismic monitoring. The nature and degree of fracture complexity must be clearly understood to optimize stimulation design and completion strategy. Unfortunately, the existing single planar fracture models used in the industry today are not able to simulate complex fracture networks. A new hydraulic fracture model is developed to simulate complex fracture network propagation in a formation with preexisting natural fractures. The model solves a system of equations governing fracture deformation, height growth, fluid flow, and proppant transport in a complex fracture network with multiple propagating fracture tips. The interaction between a hydraulic fracture and pre-existing natural fractures is taken into account by using an analytical crossing model and is validated against experimental data. The model is able to predict whether a hydraulic fracture front crosses or is arrested by a natural fracture it encounters, which leads to complexity. It also considers the mechanical interaction among the adjacent fractures (i.e., the "stress shadow" effect). An efficient numerical scheme is used in the model so it can simulate the complex problem in a relatively short computation time to allow for day-to-day engineering design use. Simulation results from the new complex fracture model show that stress anisotropy, natural fractures, and interfacial friction play critical roles in creating fracture network complexity. Decreasing stress anisotropy or interfacial friction can change the induced fracture geometry from a bi-wing fracture to a complex fracture network for the same initial natural fractures. The results presented illustrate the importance of rock fabrics and stresses on fracture complexity in unconventional reservoirs. They have major implications on matching microseismic observations and improving fracture stimulation design.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3