A Catalogue of Fiber Optics Strain-Rate Fracture Driven Interactions

Author:

Ugueto Gustavo1,Wu Kan2,Jin Ge3,Zhang Zhishuai4,Haffener Jackson5,Mojtaba Shahri6,Ratcliff David7,Bohn Rob8,Chavarria Andres9,Wu Yinghui10,Guzik Artur11,Srinivasan Aishwarya2,Gibson Richard8,Savitski Alexei1

Affiliation:

1. Shell Exploration and Production Company

2. Texas A&M University

3. Colorado School of Mines

4. Chevron

5. Devon Energy

6. Apache

7. ResFrac

8. Halliburton

9. OptaSense

10. Silixa

11. Neubrex

Abstract

AbstractThe downhole monitoring of strain using Fiber Optics (FO) can reveal unique information about the propagation and geometry of hydraulic fractures between nearby wells during stimulation and production. This work aims at creating a catalogue of commonly observed strain-rate signals captured in a not yet stimulated nearby observation well equipped with either a permanently or temporarily installed FO cable. This catalogue is the result of an informal collaboration between experience FO users from academia, service providers, consulting companies, and operators.In the creation of this first edition of a strain-rate catalogue, we considered two main types of stimulation categories (single and multi-entry) as well as the angle between the hydraulic fractures and the segment of the well where the strain-rate signals are observed (horizontal vs. vertical segments). In the catalogue we show a series of representative examples of two main types of far-field strain Fracture Driven Interactions (s-FDI) commonly encountered in frac diagnostics: 1. Vertical hydraulic fractures being monitored in a lateral portion of a horizontal well and 2. Vertical fractures being monitored in a vertical observation well. The catalogue is organized around commonly observed s-FDI motifs. Because interpretation of observed strain-rate signals can be subjective, when possible, we included observed examples with a brief description of our interpretation, as well as synthetic signals from geomechanical models of similar motifs. The strain-rate motifs were modeled based on first physical principles for rock deformation. These models serve to support the proposed interpretation of the observed signals.FO strain rate monitoring is changing our understanding about the hydraulics fracturing process. The information from FO strain is not available by other commonly used fracture diagnostic techniques. Strain- rate fractures driven interactions between wells occur in predictable patterns (Frac Domain and Stage Domain Corridors – FDC & SDC respectively) which are typically in line with the cluster spacing and stage length in the borehole being stimulated. Using FO strain monitoring, we now know that hydraulic fractures are larger than first anticipated, both in length and height. Many examples indicated that there is a direct correspondence between the near-field and far-field stimulation geometries. The lack of isolation due to cement quality and or plug failure manifests in the far-field geometries observed via FO strain-rate in nearby wells. The use of FO strain monitoring has also revealed that reopening of hydraulic fractures is common not only between prior and infill wells but also between wells from the same stimulation vintage. All these observations and conditions must be considered when interpreting new strain-rate datasets and more importantly when designing new hydraulic fracturing operations and considering different stimulation order (zipper schedule), as well as when making decisions about the vertical and lateral spacing of adjacent wells.The purpose of this industry-first edition strain-rate catalogue is to aid, new and experienced FO users, on the interpretation of strain-rate datasets. Ultimately, the accurate interpretation of FO strain data will not only help calibrate geomechanical and reservoir models but also directly influence where and how we complete unconventional wells. Nowadays, many s-FDI examples exist in scattered publications with formats that aren’t easily comparable for new users of the technology. In this project, we expand upon those publications to create an encompassing analysis with up-to-date interpretations where we have formalized the formatting of figures for better readability (color scheme, scales, etc.). What has resulted from this collaborative effort is a novel catalogue not available before in the FO published literature.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3