The Effects of Fluid Viscosity and Density on Proppant Transport in Complex Slot Systems

Author:

Bahri Ashtiwi1,Miskimins Jennifer1

Affiliation:

1. Colorado School of Mines

Abstract

Summary In this paper, we discuss proppant transport behavior in a complex slot system. Specifically for this study, focus is placed on two different fluid systems, a water/glycerin solution and a water/sodium chloride solution, which represent varying fluid densities and viscosities. The effects of changing fluid viscosities, fluid densities, proppant densities, proppant sizes, proppant concentrations, and slurry injection rates on proppant transport were then experimentally investigated. The slot system consists of a 4-ft long, 0.2-in. primary slot with three secondary slots and two tertiary slots, all at 90° angles to each other. The fluid systems represented brine fluids up to 9.24 ppg and viscous fluids up to 4.3 cp. Although glycerin was used for viscosification, the results can be compared to fluid systems with similar viscosities that are created using other additives such as friction reducers. The proppants used in the study consisted of two sands of 100 and 40/70 mesh (specific gravity of 2.65) and two 40/70 ceramic proppants with specific gravities of 2.08 and 2.71. The study results show that a water/glycerin solution, with a viscosity of 4.3 cp, has significant proppant-carrying capacity with proppants delivered uniformly to greater distances. In addition, sieve analysis conducted on each of the various slots indicated that for all tested proppants that the water/glycerin systems were more capable of carrying larger particles to farther distances. Conversely, the results show that a water/sodium chloride solution of 9.24 ppg density has less capability to carry the proppant farther into the slots. From a comparison standpoint, in all tested cases, viscosity increases had a greater impact on the overall proppant transport than fluid density. In addition, results of the study showed that both increasing proppant concentrations and injection rates have a positive impact on proppant transport, with more proppant being transported farther into the slot system in both cases. The higher the proppant concentration, the sooner the equilibrium dune height (EDH; height when transport starts to occur after dune building) was achieved, the more efficient transport became. Increasing the injection rate led to improving proppant transport by increasing the drag and lift forces on the proppant, which lead to decreased proppant settling velocities and transport farther into the slots.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3