Microfluidic Investigation of Low-Salinity Effects During Oil Recovery: A No-Clay and Time-Dependent Mechanism

Author:

Du Yujing1,Xu Ke2,Mejia Lucas1,Zhu Peixi1,Balhoff Matthew T.1

Affiliation:

1. University of Texas at Austin

2. Massachusetts Institute of Technology

Abstract

Summary We present a study of the low–salinity effect during oil recovery using microfluidics experiments in an attempt to narrow the gap between pore–scale observations and porous–media–flow mechanisms, and to explain one type of low–salinity effect with delayed oil recovery and without the presence of clay. A microfluidic toolbox is used, including single–pore–scale microchannels, a pore–network–scale (approximately 102 pores) micromodel, and a reservoir–on–a–chip model (approximately 104 pores with heterogeneity), all with 2D connectivity. Experiments at the single–pore scale reveal a time–dependent oil dewetting and swelling behavior when a crude–oil droplet is in contact with low–salinity water. An interplay between water chemical potential and oil–phase polar compounds explains this pore–scale observation well. Experiments at the pore–network scale illustrate that the dewetting and swelling of residual oil in the swept region increase the water–flow resistance, modifying the flow field and thus redirecting the flooding liquid into unswept regions. This pore–network–scale effect is re–expressed into a macroscale model as a sweep–efficiency improvement derived from the change of relative permeabilities, which requires time to develop. Finally, experiments on our “reservoir–on–a–chip” model show significant incremental oil recovery during tertiary low–salinity waterflooding and confirm that late–time sweep–efficiency improvement contributes to most of the incremental oil recovery. On the basis of this microfluidic framework, we emphasize the following three findings: Low–salinity tertiary waterflooding can improve oil recovery by an improvement of sweep efficiency, which is a consequence of residual–oil dewetting and swelling.The low–salinity effect can occur without the existence of clay.The wettability alteration and oil swelling are time–dependent processes and should be expressed as a function of oil/water contact time rather than dimensionless time [pore volume (PV)], which explains some observations from previous coreflood experiments.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3