Numerical Investigation of the Effects of Core Heterogeneities on Waterflood Relative Permeabilities

Author:

Huppler John D.1

Affiliation:

1. Esso Production Research Co.

Abstract

Abstract Numerical simulation techniques were used to investigate the effects of common core heterogeneities upon apparent waterflood relative-permeability results. Effects of parallel and series stratification, distributed high and low permeability lenses, and vugs were considered. permeability lenses, and vugs were considered. Well distributed heterogeneities have little effect on waterflood results, but as the heterogeneities become channel-like, their influence on flooding behavior becomes pronounced. Waterflooding tests at different injection rates are suggested as the best means of assessing whether heterogeneities are important. Techniques for testing stratified or lensed cores are recommended. Introduction Since best results from waterflood tests performed on core plugs are obtained with homogeneous cores, plugs selected for testing are chosen for their plugs selected for testing are chosen for their apparent uniformity. We know, however, that uniform appearance can be misleading. For example, flushing concentrated hydrochloric acid through an apparently homogeneous core plug often produces "wormholes" in higher permeability regions. Also, we sometimes find that all core plugs from a region of interest have obvious heterogeneities, so any flooding tests must be run on nonhomogeneous core plugs. plugs. Nevertheless, relative permeabilities, as obtained routinely from core waterflood data, are calculated using the assumption that the core is a homogeneous porous medium. While it is obvious that porous medium. While it is obvious that heterogeneties mill affect these apparent relative permeabilities, there appear to be no experimental permeabilities, there appear to be no experimental results reported in the literature to indicate just how serious the problem is. Accordingly, a computer simulation study of core waterfloods was conducted to systematically examine the effects of different sizes and types of core heterogeneities on flood results. The study was performed by numerical simulation using two-dimensional, two-phase difference equation approximations to describe the immiscible water-oil displacement. For each simulation the permeability and porosity distribution of the heterogeneous core to be studied was specified; fluid flow characteristics of the system, including a single set of input relative-permeabilities curves, were stipulated The system was set in capillary pressure equilibrium at the reducible water saturation. Then a waterflood simulation was performed. From the resulting fluid production and pressure-drop data a set of production and pressure-drop data a set of relative-permeability curves was calculated using the standard computational procedure applicable to homogeneous cores. In this paper these calculated relative-permeability curves are denoted as "waterflood" curves to distinguish them from the specified input curves. The waterflood relative-permeability curves should closely match the input curves for homogeneous systems. Since the same set of input relative-permeability curves was used for all rock sections, deviations of the waterflood from the input relative-permeability curves gave an indication of the effects of heterogeneities. When the system was heterogeneous and there was good agreement between waterflood and input relative-permeability curves, then the heterogeneities did not strongly influence the flow behavior and the system responded homogeneously. MATHEMATICAL MODEL AND METHOD The waterflood simulations were carried out using two-dimensional, two-phase difference equation approximations to the incompressible-flow differential equations:* .....................(1) ....................(2) SPEJ P. 381

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3