Experimental Study of Phase-Transformation Effects on Relative Permeabilities in Fractures

Author:

Chen Chih-Ying1,Li Kewen1,Horne Roland N.1

Affiliation:

1. Stanford University

Abstract

Summary Phase transformation affects multiphase flow in geothermal and gas/condensate reservoirs owing to the same substance occurring in different phases. These effects change the phase behavior and the flow characteristics. The goals of this research were to compare the flow behavior and relative permeability differences between two-phase flow with and without phase-transformation effects in smooth-walled and rough-walled fractures. During this research, an experimental apparatus was built to capture the unstable nature of the two-phase flow in fractures and to display the flow structures in real time. Two-phase-flow experiments with phase-transformation effects (steam/water flow) and without phase-transformation effects (nitrogen/water flow) were conducted. The porous-medium approach was used to calculate two-phase relative permeabilities. From the results in this study, steam/water relative permeabilities are different from nitrogen/water relative permeabilities. The enhanced steam-phase relative permeability is caused by the effects of phase transformation. This shows consistency with some earlier studies in porous media. The nitrogen/water relative permeability is described most appropriately by using the viscous coupling model. However, steam/water flow in the rough-walled fracture, which is coupled with strong phase-transformation effects, seems to be represented better by Brooks-Corey relative permeability functions for fractured media (λ→∞). The results from this study suggest that relative permeabilities accounting for phase-transformation effects must be used in simulations of geothermal and solution-gas reservoirs to represent two-phase interactions adequately.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3