Static and Dynamic Comparison of Equation of State Solid Model and PC-SAFT for Modeling Asphaltene Phase Behavior

Author:

Abouie Ali1,Rezaveisi Mohsen2,Mohebbinia Saeedeh3,Sepehrnoori Kamy1

Affiliation:

1. The University of Texas at Austin

2. The University of Texas at Austin, BHP Billiton

3. The University of Texas at Austin, Halliburton

Abstract

Abstract Asphaltene deposition is known to be one of the major problems in oil fields. Asphaltene precipitation and deposition from the reservoir fluid can block pore throats or change the formation wettability in the reservoir. Furthermore, asphaltene precipitation and deposition result in partial to total plugging in the wellbore. Recent studies have shown that PC-SAFT EOS is a more appropriate and comprehensive thermodynamic model for simulation of asphaltene precipitation. The main objective of this paper is to implement PC-SAFT EOS into a compositional wellbore simulator to model asphaltene precipitation. Flocculation and deposition models are also integrated with the thermodynamic model to simulate the dynamics of asphaltene deposition along the wellbore. In addition, the capabilities of PC-SAFT and common-used Peng-Robinson equation of state are compared through fluid characterization to reproduce experimental precipitation data. The simulation results indicate asphaltene deposition profile and consequent decline in production rate. It is shown that the profile of asphaltene deposition is mostly governed by the precipitation condition and the deposition rate. Moreover, prediction capability of cubic equation of state is shown to give approximately similar results if additional precipitation data is available (e.g. lower onset pressure and maximum amount of precipitation). The prediction results of the developed tool are highly crucial to monitor the well performance, optimize the operating conditions of the field, and propose the remediation technique.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3