Quantifying Monte Carlo Uncertainty in the Ensemble Kalman Filter

Author:

Thulin Kristian1,Nævdal Geir1,Skaug Hans Julius2,Aanonsen Sigurd Ivar2

Affiliation:

1. International Research Institute of Stavanger and Centre for Integrated Petroleum Research University of Bergen

2. University of Bergen

Abstract

Summary The ensemble Kalman filter (EnKF) is currently considered one of the most promising methods for conditioning reservoir-simulation models to production data. The EnKF is a sequential Monte Carlo method based on a low-rank approximation of the system covariance matrix. The posterior probability distribution of model variables may be estimated from the updated ensemble, but, because of the low-rank covariance approximation, the updated ensemble members become correlated samples from the posterior distribution. We suggest using multiple EnKF runs, each with a smaller ensemble size, to obtain truly independent samples from the posterior distribution. This allows a pointwise confidence interval to be constructed for the posterior cumulative distribution function (CDF). We investigate the methodology for finding an optimal combination of ensemble batch size n and number of EnKF runs m while keeping the total number of ensemble members n×m constant. The optimal combination of n and m is found through minimizing the integrated mean-square error (MSE) for the CDFs. We illustrate the approach on two models, first a small linear model and then a synthetic 2D model inspired by petroleum applications. In the latter case, we choose to define an EnKF run with 10,000 ensemble members as having zero Monte Carlo error. The proposed methodology should be applicable also to larger, more-realistic models.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3