An Improved Study of Emulsion Flooding for Conformance Control in a Heterogeneous 2D Model with Lean Zones

Author:

Ding Boxin1,Sang Qian2,Nie Zhiquan3,Li Zhaowen3,Dong Mingzhe4,Chen Zhangxin5,Kantzas Apostolos5

Affiliation:

1. University of Calgary (Corresponding author; email: boxin.ding@ucalgary.ca)

2. China University of Petroleum (Huadong)

3. PetroChina Canada Ltd

4. University of Calgary (Corresponding author; email: mingzhe.dong@ucalgary.ca)

5. University of Calgary

Abstract

Summary Use of oil-in-water (O/W) emulsion has shown its potential for conformance control in heterogeneous porous media, yet it is essential to understand how to improve the conformance control performance in the heterogeneous 2D model with lean zones before it is applied in the fields. In this paper, an O/W emulsion-based conformance control method is improved through newly designed flow tests and optimized modeling study. A heterogeneous 2D model was designed with a high water mobility zone (HWMZ) and a low water mobility zone (LWMZ) separated by a horizontal injection well to mimic real oil sands with lean zones (top- or bottomwater) and with application of horizontal wells. Optimal conformance control strategies were proposed and examined in the 2D model by injecting correspondingly designed O/W emulsions. In an improvement of our previously proposed emulsion flow model (Ding et al. 2020c), we introduce the real phenomena of permeability reduction (PR) coefficients in this paper to describe the three ambiguous coefficients: flow distribution coefficient (γ), plugging coefficient (α), and retention rate coefficient (a). This newly developed model can incorporate with characteristics of the emulsion and the heterogeneous porous media through the introduction of the experimentally derived PR coefficient. It is well established in COMSOL Multiphysics® (COMSOL AB 2005), and the modeling results show good agreement with the experimentally monitored results in the three types of flow tests. This work bridges experimental and mathematical studies on emulsion flow in 2D models associated with lean zones and is able to provide a guide on optimal emulsion design and injection strategy for optimal conformance control performances.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3