Method To Generate Full-Bore Images Using Borehole Images and Multipoint Statistics

Author:

Hurley Neil F.1,Zhang Tuanfeng1

Affiliation:

1. Schlumberger-Doll Research

Abstract

Summary Borehole-image logs, which are produced by tools being lowered into a well, provide oriented electrical and acoustic maps of the rocks and fluids encountered in the borehole. Electrical borehole images in water-based (conducting) and oil-based (nonconducting) muds are generated from electrodes arranged in fixed patterns on pads that are pressed against the borehole wall. Depending on the borehole diameter, gaps nearly always occur between pads. Because of these gaps, it is common to have nonimaged parts of the borehole wall. Full-bore images are complete, 360° views of the borehole wall. They are generated by "filling in the gaps" between the pads in borehole-image logs. This method uses the Filtersim algorithm of multipoint statistics (MPS) to generate models, or realizations. Measured (incomplete) borehole images themselves are used as "training images." Recorded data are perfectly honored (i.e., the models are conditioned to the real data). Gaps are filled with patterns similar to those seen elsewhere in the log. Patterns in the gaps match the edges of the pads. The frequency distribution of continuously variable pixel colors in the gaps matches the distribution of pixel colors in the measured images. Full-bore images facilitate visualization and interpretation of borehole-image logs in any lithology, although case studies shown in this paper are developed in vuggy and fractured rocks. These images can be used to draw closed contours around electrically resistive or nonresistive patches in the borehole wall. Full-bore images can be used to repair logs with bad electrodes, low pad pressure, or poor acoustic reflections. Therefore, they can be used to enhance any commercially available electrical or acoustic borehole images.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3