Production Forecasting in Unconventional Resources using Data Mining and Time Series Analysis

Author:

Gupta Siddhartha1,Fuehrer Franz1,Jeyachandra Benin Chelinsky1

Affiliation:

1. Schlumberger

Abstract

Abstract Production forecasting in shale reservoirs is a challenging task because of the complex influences of geology, lithology, stimulation practices, etc. The large well count makes history matching and forward simulation particularly time consuming and laborious. In such a context, it is important to consider alternative methods, and to this end, we have developed two new methods of forecasting production. The first method uses data mining techniques, which allow the analysis of large quantities of data to discover meaningful pattern and relationships. These can subsequently be used for prediction. Some common data mining tools are neural networks (NN), genetic algorithms (GA), and self-organizing maps (SOM). Our method uses NN for predicting the future performance of a shale gas well based on historical production data of the previous year. The decline in production is captured during the NN training process and applied to the production data during the forecasting phase. The model is simple, elegant and fast and is able to forecast production in an unconventional play with reasonable tolerance. The second method uses time series analysis. It the trend, changes in value, rate of decline, and correlation with the past to generate a rapid and accurate forecast. The stock markets use this technique, and it is safe to say that if it can predict the stock ticks, then it can yield good results on a fluctuating, but surely declining, production rate. These methods are elegant and fast and are able to forecast production in an unconventional play with reasonable tolerance. They are not data intensive and can also be automated to be applied to a large number of wells, which makes them particularly useful in integrated operations in which a comparison of actual versus predicted behavior would enable operators to quickly identify problem wells for a more detailed investigation. The methods were applied to wells from the Barnett, Bakken, and Eagle Ford plays.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3