Numerical Methods of Higher-Order Accuracy for Diffusion- Convection Equations

Author:

Price H.S.1,Cavendish J.C.1,Varga R.S.2

Affiliation:

1. Gulf Research And Development Co.

2. Case Western Reserve U.

Abstract

Abstract A numerical formulation of high order accuracy, based on variational methods, is proposed for the solution of multidimensional diffusion-convection-type equations. Accurate solutions are obtained without the difficulties that standard finite difference approximations present. In addition, tests show that accurate solutions of a one-dimensional problem can be obtained in the neighborhood of a sharp front without the need for a large number of calculations for the entire region of interest. Results using these variational methods are compared with several standard finite difference approximations and with a technique based on the method of characteristics. The variational methods are shown to yield higher accuracies in less computer time. Finally, it is indicated how one can use these attractive features of the variational methods for solving miscible displacement problems in two dimensions. Introduction The problem of finding suitable numerical approximations for equations describing the transport of heat or mass by diffusion and convection simultaneously has been of interest for some time. Equations of this type, which will be called diffusion-convection equations, arise in describing many diverse physical processes. Of particular interest here is the equation describing the process by which one miscible liquid displaces another liquid in a one-dimensional porous medium. The behavior of such a system is described by the following parabolic partial differential equation: (1) where the diffusivity is taken to be unity and c(x, t) represents a normalized concentration, i.e., c(x, t) satisfied 0 less than c(x, t) less than 1. Typical boundary conditions are given by ....................(2) Our interest in this apparently simple problem arises because accurate numerical approximations to this equation with the boundary conditions of Eq. 2 are as theoretically difficult to obtain as are accurate solutions for the general equations describing the behavior of two-dimensional miscible displacement. This is because the numerical solution for this simplified problem exhibits the two most important numerical difficulties associated with the more general problem: oscillations and undue numerical dispersion. Therefore, any solution technique that successfully solves Eq. 1, with boundary conditions of Eq. 2, would be excellent for calculating two-dimensional miscible displacement. Many authors have presented numerical methods for solving the simple diffusion-convection problem described by Eqs. 1 and 2. Peaceman and Rachford applied standard finite difference methods developed for transient heat flow problems. They observed approximate concentrations that oscillated about unity and attempted to eliminate these oscillations by "transfer of overshoot". SPEJ P. 293ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3